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Abstract 

 

In recent years, an emerging trend in the information community is the growing use 
of web applications to collect and share geographic information. Such initiatives 
have increased the accessibility of geodata. Collaborative mapping platforms such 
as OpenStreetMap (OSM) have become important sources of geodata and 
potentially complementary with any Spatial Data Infrastructure initiatives. However, 
as volunteered geodata were generated by people with varying skill levels, quality 
issues such as missing details and incomplete content are inevitable with this 
approach. 

In this study, we aimed to understand both the weakness and potential of OSM 
building footprints from three criteria: completeness, topological errors, and 
geometric accuracy. Case study areas were set in two major metropolitan areas of 
Taiwan, Taipei City and Taichung City. We compared OSM quality with a reference 
dataset from authority. The completeness assessment was computed in different 
scales by unit-based and object-based methods. We found the object-based 
method more appropriate for assessing our data. The completeness of 
corresponding building footprints (Coverlap) was 15.8% in Taipei and 11.7% in 
Taichung respectively; the highest complete location was Dari district of Taichung 
(Coverlap = 66.2%). Completeness results were mixed between high-density and 
low-density districts. Generally, the central business districts had higher 
completeness than low-density areas and the variation was significant. An 
interesting finding was that the resolution of OSM building footprints in several 
districts of Taichung was higher than the reference dataset. Based on an inquiry 
of the OSM contributor community, we believe the high-resolution footprints were 
likely due to the promotion of university education in those areas. 

Subsequently, we assessed topological errors and found that 2.9% of OSM 
building footprints in Taipei and 2.0% in Taichung had overlapping errors. In 
contrast, the reference dataset had no errors. Then, 384 OSM building footprints 
with a 1:1 relation to the reference building identified by the overlap method were 
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randomly sampled to measure geometric accuracy. Using a turning function, the 
geometric accuracy assessment identified that 12% were very similar to reference 
buildings yet 10% were highly dissimilar. Through visual analysis and computing 
the sum of the number of vertices, we concluded that the reference dataset was 
more complex in building representation. 

As the Taiwanese OSM contributor community intended to tag building footprints 
for evacuation, we tried to identify the completeness of evacuation buildings in the 
two cities. The results showed that 47.1% of evacuation buildings can be identified 
on OSM. 

This all indicates that the general completeness of OSM building footprints is not 
consistent, and they are mostly under-represented. Nevertheless, OSM building 
footprints in several districts of Taichung possess higher resolution than 
authoritative data, and the completeness of both building footprints and evacuation 
centres is higher than 50%. This shows OSM has a great potential for field use,  
particularly in a scenario of disaster management. OSM can be a better source for 
a large-scale SDI platform and help to enable a resilient and prepared society. 

Keywords: Data Quality, Volunteered Geographic Information, Building Footprint, 
Spatial Data Infrastructures 

  

1. SETTING THE SCENE 

The innovations of information and communication technologies (ICTs) have 
brought numerous benefits to the real world. Instant and content-rich spatial data 
from websites and mobile apps are easy to share and access on the Internet. 
Today geographic information is not only produced by authoritative organizations 
but also by lay people without professional cartographic skills. This phenomenon, 
termed Volunteered Geographic Information (VGI), encapsulates the idea of 
collecting, maintaining, and distributing geographic information by volunteers 
(Goodchild, 2007). 

There is no fixed form of VGI. It may be citizen-generated geographic content 
including images, videos, and textual information (Craglia et al., 2012; Dransch et 
al., 2013). In terms of vector data to represent physical features such as roads and 
buildings, OpenStreetMap (OSM) is the most famous of VGI initiatives. OSM is a 
collaborative mapping platform wherein volunteers can digitalize features based 
on high-resolution imagery, or leverage Global Positioning System (GPS) tracks to 
create a street map. As it is free and open, it has been an alternative geodata 
source to authoritative venues. In contrast, authoritative geodata from Spatial Data 
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Infrastructure (SDI) initiatives are expensive to create and update; in addition, 
users are often required to pay fees for access to authoritative data. 

OSM has therefore played a critical role in areas without a good quality digital map 
and where geodata are limited by access. For example, after the devastating 
earthquake in Haiti in 2010, OSM became the default basemap for responding 
organizations (Zook et al., 2010). In recent years, the number of OSM registered 
user has risen rapidly, increasing tenfold between 2010 and 2016, reaching 2.4 
million. Yet as OSM data are contributed by volunteers with various motivations 
and skills, quality issues such as vandalism, missing details, and incomplete 
content are inevitable and have been critical research problems. 

In our experience using OSM, the quality of building data is highly uncertain. 
Buildings comprise one of the most important physical elements of human society. 
The need for building data is high in many domains such as urban planning (e.g. 
analysis of land use change) and emergency management (e.g. developing an 
evacuation system or damage assessment). We therefore conducted a case study 
to assess the quality of OSM building footprints in regions of Taiwan. We measured 
completeness, topological errors, and geometric accuracy in OSM building 
footprints by comparing OSM data with authoritative data and the GIS analyzer. 
Moreover, as recent studies pointed out that VGI could be used for pre-disaster 
planning and preparation (Haworth and Bruce, 2015; Schelhorn et al., 2014) and 
the Taiwanese OSM’s contributor community has begun annotating evacuation 
locations, there was a need to obtain complete information on OSM regarding 
evacuation buildings. This study integrates several existing methods to understand 
both the weakness and potential of OSM building footprints from the aspects of 
internal and external quality. 

The remainder of the paper is organized as follows: Section 2 provides a brief 
review of quality elements and methods  of OSM quality assessment. Section 3 
describes the methodology of the study. Section 4 demonstrates the results of data 
quality assessment. In section 5, we discuss our results compared to similar 
studies, draw conclusions, and provide insight into OSM quality issues. 

2. QUALITY ISSUE OF OPENSTREETMAP 

2.1. Quality Issues of VGI 

Spatial data and services are usually provided by authorities with sufficient 
knowledge, technology, and labor for capture, analysis, and digitalization through 
a top-down approach. However, the cost of production, integration, updating, and 
delivery is expensive. And most SDIs typically deploy only participants who have 
professional spatial information skills, leaving a large part of society with a nominal 
role (Budhathoki et al., 2008; Ho and Rajabifard, 2010). These issues can 
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potentially be complemented by VGI. As VGI is a bottom-up approach in which 
citizens act as sensors; data are usually free and open access. It is beneficial 
specifically where authoritative data fall short in satisfying the needs of a particular 
situation (Feick and Roche, 2013). 

Though VGI has many advantages, it lacks structured sampling and rigorous 
measurement methods; data quality is a major concern (Goodchild and Glennon, 
2010; Goodchild et al., 2012). Generally, data quality represents for the user the 
fitness of the dataset for a potential application (Aalders, 2002). As data holds a 
perceivable level of similarity between the data produced and the real-world 
phenomena described, assessing quality in relation to the absence of errors in the 
data is the measurement of internal quality (Devillers et al., 2007; Fisher, 1999; 
Guptill and Morrison, 1995). Common quality elements have been defined by 
standard organizations. For example, ISO 19113 described five elements including 
completeness, logical consistency, positional accuracy, temporal accuracy, and 
thematic accuracy. Another aspect of data quality is external quality. It represents 
how well internal specifications fulfill the user needs. The assessment relies on 
measures of internal criteria and explicit objectives for intended use (Poser and 
Dransch, 2010). 

When using authoritative data, quality criteria are often documented in the 
metadata. This helps end users realize data quality. However, when using VGI, 
these criteria are absent in the metadata, so quality is uncertain and has become 
a barrier for OSM for end-users. In this study, we measured three criteria of OSM 
building footprints: completeness, topological errors, and geometric accuracy. 
Completeness is a measure of presence and absence of features. It describes the 
relationship between objects and the abstract universe of all such objects 
(Goodchild, 2008; ISO, 2013; Veregin, 1999). Geometric accuracy assesses the 
positioning and geometric resolution from the ground reality. In OSM quality 
assessment, the two criteria often use a reference dataset for comparison (e.g. 
Girres and Touya, 2010). Topological errors often occur due to a fallible mapping 
which violates predefined rules of geometry and results in logical inconsistency. 
Possible polygon errors include (1) unclosed rings, (2) gaps and overlapping 
between polygons, and (3) self-intersection (Servigne et al., 2000). 

2.2. Assessment Methods 

Methods for OSM quality assessment differ in features and criteria. The 
comparison method, which assesses quality by comparing OSM data with similar 
high-accuracy data, is essential and widely applied in the literature. For example, 
to assess positional accuracy of OSM road networks in England, Haklay (2010) 
used a buffer zone to calculate the percentage of overlap between VGI and 
authoritative data; the results showed OSM had approximately 80% overlap. 
Haklay (2010) also calculated the total length of OSM roads, and compared the 
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values with the authoritative dataset in grid units for the completeness assessment. 
Besides this, OSM studies have measured quality at different scales and times (e.g. 
Zielstra and Zipf, 2010), or focused on automated feature matching comparison 
(e.g. Koukoletsos et al., 2012). Various methods of quality assessment have been 
developed. Results showed that OSM data can be very rich with good quality, but 
it is heterogeneous in the details of features. The researcher also concluded that 
OSM quality should be evaluated both locally and globally (Zheng and Zheng, 
2014). 

With regard to assessing quality of polygon features, researchers have developed 
several methods related to our objective criteria. For example, Hecht et al. (2013) 
developed unit- and object-based (i.e. feature matching) methods for measuring 
completeness of OSM building footprints. Targeting geometric accuracy, Girres 
and Touya (2010) calculated polygonal granularity (i.e. the shortest segment) and 
compactness of lake features, and the result demonstrated a great difference in 
granularity between OSM features and references. However, the two methods lack 
a good way to interpret results. Methods such as the Hausdorff distance or surface 
distance were also used (Eckle and de Albuquerque, 2015). Comparing these 
methods, we found that shape similarity is a better measure for geometric accuracy. 
This measure uses the turning function developed by Arkin et al. (1991) and has 
been tested (e.g. Mooney et al., 2010; Fan et al., 2014). As for topological errors, 
assessment does not require reference data, and tools with robust algorithms are 
available. A case in point is Sehra et al. (2016) investigated topological errors on 
line and polygon features on OSM and found a large number of errors. 

In this section, we briefly introduced the assessment methods and findings in the 
literature. Note that as quality assessment usually requires a reference dataset for 
comparison and mass processing and measurement, the OSM quality control 
among contributors still relies on crowdsourcing and social approaches (Goodchild 
and Li, 2012). Several free online quality assessment and assurance tools (e.g. 
OSM Notes) have been developed to get detailed OSM quality information from 
users. 

3. THE STUDY AREA AND ASSESSMENT METHODOLOGY 

This section describes the data used in this study and the assessment 
methodology. We integrate several existing methods from previous research on 
OSM quality (e.g. Hecht et al., 2013; Mooney et al., 2010; Fan et al., 2014). 

3.1. Study Area and Data Collection 

The areas selected for this study were two major metropolitan areas of Taiwan, 
Taipei City and Taichung City. As OSM data quality highly depends on the density 
of OSM contributors, we assumed that the quality of building data was potentially 
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better than other administrative districts since contributor density in the urban 
districts of Taipei and Taichung was high (Chuang et al., 2013, Haklay et al., 
2010a). Additionally, Taichung is composed of four areas with great variance of 
population density. The assessment results in the low-density areas (Shanxian and 
Haixian) provide a reflection of other such urban areas. 

Figure 1: The study area: Taipei City and Taichung City 

 

The OSM dataset (shapefiles) was extracted from the OSM data provider 
Geofabrik1, which was updated to 12 March 2016. The reference dataset used as 
a baseline for assessment was the Taiwan Electronic Map, supplied by the 
National Land Surveying and Mapping Centre (NLSC) at a scale of 1:2500. 
Through visual comparison between the reference dataset and Satellite Map, it 
was highly complete. This comparison can be seen in a web mapping platform2. 
The data were not free to the public currently; a Web Map Service (WMS) was 
provided. 

3.2. The Unit-Based Completeness Assessment 

The basic completeness measurement was built on the unit-based method defined 
by Hecht et al. (2013). It measures the proportion of total number or area of OSM 
building footprints and references within a given unit. There are two indicators of 
completeness. CNo measures the completeness of total number and CArea 

measures the completeness of total area. The definitions of CNo and CArea are: 

                                                

1 https://www.geofabrik.de/ [accessed 12 March 2016] 
2 http://emap.nlsc.gov.tw/gis103/ [accessed 1 July 2016] 

https://www.geofabrik.de/
http://emap.nlsc.gov.tw/gis103/
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CNo =
∑𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑁𝑜𝑂𝑆𝑀

∑𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑁𝑜𝑅𝑒𝑓
               (1) 

CArea =  
∑𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑂𝑆𝑀

∑𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑅𝑒𝑓
        (2) 

In this study, we used the administrative districts as defined units and assessed 
the completeness at three scales: city, township, and village. The results would be 
presented by tables in the township units and maps in the village units 

3.3. The Object-Based Assessment  

The unit-based method does not consider feature-matching relation. Building data 
production requires huge manual processing, and the outcome has different 
standards. A building footprint can represent several buildings, or a single building. 
Therefore, there are six relations existing between reference polygons and OSM 
building polygons: 1:1, 1:n, 1:0, 0:1, n:1, and n:m. Identification of OSM building 
footprints corresponding to at least one reference building (1:1, 1:n, n:1, or n:m) 
enables the assessment to be calculated in relation to their representatives. 

The feature-matching rule is an important research setting in an object-based 
method. In our previous study, we used an attribute similarity ratio and a buffer 
search for the corresponding public property (Kalantari and La, 2015). However, 
this was not applicable to building footprints, as a name attribute was absent. 
Therefore we used the overlap method, which computes the overlap area between 
two polygons. We defined that the ratio of the overlap area in the minimum footprint 
area between OSM and reference had to reach 30% to be regarded as 
corresponding features (Hecht et al., 2013; Fan et al., 2014). Otherwise, it was 
regarded as non-matching (1:0 or 0:1).  Completeness based on the overlap 
method (Coverlap) is defined as: 

    For corresponding building,
𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝐴𝑟𝑒𝑎

min (𝐴𝑟𝑒𝑎(𝑂𝑆𝑀𝑖),𝐴𝑟𝑒𝑎(𝑅𝑒𝑓𝑗))
> 30%,   

Coverlap = 
∑𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑂𝑆𝑀

∑𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝐴𝑟𝑒𝑎𝑅𝑒𝑓
    (3) 

Figure 2 is an example of the identification of corresponding features. The seven 
reference building footprints in blue line were marked as A to F. The reference 
building C was a non-matching feature since the overlap area was only 9% of the 
reference building area. By contrast, other overlap areas (B and D~G) matched 
more than 30% of the minimal footprint area. Thus associated building footprints 
were regarded as matching. 
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Figure 2: An example of using the overlap method for feature matching, the 
reference building C has 9% overlap area, thus it is non-matching. 

  

3.4. Methods for Geometric Accuracy and Topological Error Assessment 

As mentioned, there are several methods used for geometric accuracy assessment 
in the literature. In this study, we measured to what extent OSM shape is similar to 
the reference shape. The method used in this study was based on the similarity 
algorithm (i.e. turning function) developed by Arkin et al. (1991). It transforms a 
polygon as a list of angle–length vertices in a counterclockwise direction and the 
perimeter is rescaled as 1. The similarity between two polygon shapes can be 
defined as the distance between their turning functions. This distance is normalized 
to the range [0, 1]. Through visual analysis, Mooney et al. (2010) defined the 
similarity between two shapes by normalizing the distance into a similarity value, 
where 1 represents identical shapes, and the lower the value, the less similarity. 
Corresponding polygons have a very similar shape while a similarity value is 
greater than or equal to 0.8, and a value of 0.5 or less represents very dissimilar 
shapes. The major limitation of this method is that it is independent of the size of 
the shape. 

For the shape similarity assessment, we implemented the source code provided 
by Gene Ressler 3  on ArcGIS. As the calculation requires much manual 
manipulation to assign matching IDs of the corresponding polygon with a 1:1 
relation, we used simple random sampling to extract the OSM buildings. Sampled 
buildings in various locations were identified by the overlap method mentioned in 

                                                

3 https://www3.cs.stonybrook.edu/~algorith/implement/turn/distrib/sim.c [accessed 12 March 2016] 

Legend

Overlap Area

Reference building

OSM Building

https://www3.cs.stonybrook.edu/~algorith/implement/turn/distrib/sim.c
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the previous section. The sampling size was determined at the 95% Confidence 
Level (CL) and 5% Margin of Error (MOE) commonly used in statistics. By applying 
the geometric accuracy assessment, we were able to measure differences in 
building footprint representation between OSM and the reference dataset. 

As for topological error detection, the OSM data used in this study were shapefiles. 
A shapefile is a non-topological data structure that does not explicitly store 
topological relationships. According to the specifications, shapefile polygons do not 
pose the problem of self-intersection4. Therefore, we investigated unclosed rings 
and overlapping between polygons. The topological errors were assessed by the 
ArcGIS topology tool with cluster tolerance at 0.001 m. 

3.5. Completeness of the Evacuation Centres 

In February 2016, a devastating Earthquake struck Taiwan (Tainan City) and 
caused numerous injuries and deaths. How to use OSM as a disaster information 
map for civic resilience became a serious topic in the Taiwanese OSM’s contributor 
community. They decided to identify evacuation centres and tag them on OSM 
buildings. 

In correspondence to this action, we were interested in how many evacuation 
buildings could actually be identified. We therefore conducted a survey on the 
completeness of evacuation buildings in OSM in Taipei and Taichung. The 
evacuation locations were extracted from the governmental Open Data platform5 
and then converted to point data in GIS. Evacuation locations in open space such 
as parks were manually excluded. The unit-based method (CNo) was adopted to 
measure completeness. We computed the portion of the number of evacuation 
locations intersecting OSM building footprints and the total number of evacuation 
locations within the city and township units. This was defined as: 

Cevacuation =
∑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑁𝑜

∑𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑜
               (4) 

4. QUALITY ASSESSMENT PROCESS AND RESULTS 

4.1. Preprocessing 

There were several preprocessing steps before the assessments. First, the 
coordinate systems of the two datasets were different. To make a comparison, the 
coordinate system of the OSM dataset was transformed to 2-degree Transverse 

                                                

4 http://support.esri.com/white-paper/279 [accessed 24 August 2016] 
5 http://portal.emic.gov.tw/pub/DSP/OpenData/EEA/Shelter.xml [accessed 12 March 2016] 

http://support.esri.com/white-paper/279
http://portal.emic.gov.tw/pub/DSP/OpenData/EEA/Shelter.xml
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Mercator projection (TWD97 TM2, EPSG Code 3826), the same as the reference 
dataset. 

Second, as both datasets were mainly digitalized from remote sensing images, 
there were some small polygons which were not building footprints. These 
features were mainly a cabin, garage, or public toilet on the map. For example, 
Figure 3 shows that a polygon in the reference dataset was actually not a 
building. To exclude non-building features, we removed building footprints with 
an area smaller than 20 m2, in accordance with findings from a previous 
experiment (Hecht et al., 2013). 

Figure 3: An example of building footprint area under 20 m2 in the reference 
dataset (Base Map/ Street View data ©2016 Google) 

  

Third, all the building footprints were spatially joined with the administrative districts 
to assign the district name. As there were a small number of buildings located on 
the boundary of the administrative district (e.g. MRT station), the value was null 

after the join. We determined the value by the location of the centroid for assigning 
the district name. Figure 4 demonstrates that the MRT building was located on 
the boundary between two villages. As its centroid is located in Village B, the 
building was labelled as Village B. 

Figure 4: A MRT station across two districts is labeled in the district of its centroid 
(Base Map ©2016 Google) 

 

Legend

OSM Building

Reference building

Village A 

Village B 
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Additionally, our preliminary evaluation found that the coordinates of the 
evacuation locations (point data) were not precise enough, in that some evacuation 
locations do not intersect with building footprints (Figure 5). Because of this, we 
used a 20-meter buffer circle instead of the point of evacuation location in the 
measurement of Cevacuation. 

Figure 5: Positional accuracy issue of evacuation location (Base Map data ©2016 
Google) 

  

4.2. Completeness Assessment  

After preprocessing, the total number of reference building footprints was 62,823 
in Taipei, and 198,276 in Taichung. By comparison, the total number from OSM 
was 7,638 in Taipei, and 102,958 in Taichung. The completeness of total numbers 
(CNo) was 12.2% in Taipei against 51.9% in Taichung. However, when computing 
the completeness of total area (Carea), the result was contrary. The total area was 

17.4% complete in Taipei, and 12.8% complete in Taichung. By assessing 
completeness in higher granularity and visual inspection, we found that the total 
number of building footprints in several districts of Taichung was more than the 
reference dataset (e.g. Central, East, and Nantung district of the inner city), that 
CNo was higher than 100%. This caused opposite results between CNo and Carea in 
the city units. Due to the resolution of building footprints, CNo was not appropriate 
to be used in Taichung. 

After the assessment of the unit-based method, completeness was re-calculated 
by the object-based method. Coverlap was 15.8% in Taipei and 11.7% in Taichung. 
Between Carea and Coverlap, we tried to identify which measure was more appropriate 
to interpret completeness. We concluded that Coverlap can exclude part of the 
topological errors (see: Discussion and Conclusion). Here we present Coverlap in 
detail. Table 1 summarizes the result in the township units of the two cities. The 
spatial distributions of Coverlap in village units are presented in Figure 6. 

Legend

!( Evacuation Center

OSM Building



12 

 

Table 1: The completeness assessment of the OSM building (Coverlap)  
a. Taipei City 

 Beitou Zhongshan Zhongzheng Neihu Nangang Shilin 

Coverlap 16.2% 19.8% 38.1% 18.4% 24.6% 8.2% 

 Datong Daan Wenshan Songshan Xinyi Wanhua 

Coverlap 9.1% 26.2% 11.2% 17.4% 21.6% 13.4% 

 
b. Taichung City 

Inner city  Central East West South North Xitun Nantun Beitun  

Coverlap 62.0% 58.8% 4.7% 6.9% 5.5% 8.7% 58.5% 5.1%  

Tuen Mun Wufeng Dari Taiping Wuri      

Coverlap 42.2% 66.2% 1.1% 4.6%      

Haixian Qingshui Dajia Shalu Wuqi Daan Dadu Longjing Waipu  

Coverlap 2.0% 0.01% 3.4% 3.2% 0.01% 0.01% 2.7% 1.2%  

Shanxian Fengyuan Donshi Daya Houli Tanzi Shigang Shengang Heping Xinshe 

Coverlap 1.0% 1.0% 0.01% 0.9% 1.1% 25.1% 0.2% 1.8% 0.2% 
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Figure 6: The map of OSM building footprints completeness assessment 

a. Taipei City 

 

 
b. Taichung City 

 
 

By examining the values across the townships and villages of Taipei, the central 
business districts (CBDs) exhibited higher completeness than other areas (Figure 
6). These areas were Zhongzheng, Daan, and Nangang (Table 1). Important traffic 
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and education facilities such as Taipei Railway Station, National Taiwan University, 
and Academia Sinica were located in these districts. On the other hand, 
completeness was low in low-density areas. For example, Shilin had the lowest 
completeness (Coverlap = 8.2%) as it contained a large mountain area. The building 
footprints were not quite complete and only important facilities were mapped. A 
visual comparison of the building footprints around the National Palace Museum in 
Shilin is illustrated in Figure 6a. 

In the case of Taichung, Coverlap of several townships was even higher than any 
district in Taipei. Generally, building footprints in these townships had higher 
resolution as compared to the reference dataset. For example, Coverlap in the 
districts around Chaoyang University of Technology and Taichung Railway Station 
was very high. Nevertheless, in most districts, even West and South of the inner 
city (CBD), Coverlap was under 7%, and it was under 4% in the low-density areas 
(most districts in Haixian and Shanxian). The variance of the completeness in 
Taichung was more significant. 

In summary, the completeness of OSM building footprints in the two cities 
demonstrated mixed results. The variation is significant. Coverlap reached 30%~75% 
in a few specific districts, but it was often low (under 10%) in low-density areas. 
We concluded that OSM does not represent a complete record in its current state 
in Taiwan. Nevertheless, the high-resolution building footprints in several districts 
of Taichung can be an advantage. Building footprints in these districts can benefit 
the user who requires a detailed edge of a specific building. 

4.3. Topological Errors and Geometric Accuracy Assessment  

In the topological error assessment, we found there were 182 and 3,956 
overlapping errors in Taipei and Taichung respectively. The percentage was 2.9% 
in Taipei and 2.0% in Taichung.  By contrast, there were no errors in the reference 
dataset. Polygons in the two datasets had no unclosed rings. The results indicated 
that overlapping errors were still common in OSM building footprints. Two of the 
most common overlapping issues identified are illustrated in Figure 7. 

As for the geometric assessment, 384 buildings with a 1:1 relation to the reference 
dataset were sampled randomly in various locations, manually, according to 95% 
CL and 5% MOE. We further examined the geometric accuracy of OSM building 
footprints (i.e. shape similarity). Using the turning function to measure the similarity 
ratio, the values of the 384 sampled building footprints ranged from 0.254 to 0.929. 
The mean was 0.641 and the standard deviation was 0.124. We used visual 
analysis to check results and confirmed the threshold defined by Mooney et al 
(2010). Our assessment showed that only 12% of OSM building footprints with a 
value greater than 0.8 were very similar to the reference building. 77% of OSM 
building footprints with a value between 0.5 and 0.8 were regarded as dissimilar 
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and 11% of OSM building footprints with a value under 0.5 were very dissimilar. 
Figure 8 shows three examples of different similarity ratios. 

Figure 7:  Examples of the topological errors 

  

a. Overlapping between adjacent 
building footprints  

b. Duplicated polygons with various resolution 
(3 small building footprints within the big 
one) 

 

Figure 8:  Examples of the shape similarity assessment (Base Map ©2016 Google) 

   

Value = 0.9182 Value = 0.6413 Value = 0.2680 

“Very Similar” “Dissimilar” “Very dissimilar” 

 

In addition to the computation of similarity ratios, we found that the number of 
vertices in OSM polygons was only 35% as compared to the reference dataset. 
Considering topological errors, the ratio of dissimilar building footprints, and the 
number of vertices in OSM polygons, we concluded that the OSM building 
footprints are mostly under-represented. The reference dataset is more complex 
in its building representation. 
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4.4. Completeness Assessment of Evacuation Centres  

In the final assessment, we aimed to know how many evacuation buildings have 
been mapped on OSM. The results showed that 58.0% in Taipei (246 out of 424) 
and 36.8% in Taichung (165 out of 448) of the evacuation buildings could be 
identified from OSM building footprints respectively. In summary, 47.1% of the 
evacuation buildings were mapped. 

When we further investigated the cause of the incompleteness, the main reason 
was the activity centre of each village was not mapped. In contrast, the evacuation 
building in education facilities (schools and universities) were mostly mapped on 
OSM. For example, 82% of the evacuation buildings were education facilities in 
Nangang of Taipei and 71% were mapped. 

To use OSM as a disaster information map for evacuation, the completeness of 
OSM building footprints might be below user expectation (i.e. around 35%~50%). 
Yet, if the OSM contributor community can be made aware of the reason for 
incompleteness and start an action to map to specify building footprints such as 
activity centres, it still has a great potential to reach acceptable completeness. 

5. DISCUSSION AND CONCLUSION 

OSM are regarded as a potential complementary source for any SDI initiative yet 
its quality is a major concern. tTo understand the weakness and potential, this 
paper conducted a case study of OSM quality assessment from multi-criteria: 
completeness, topological errors, geometric accuracy; the case study area was set 
in Taiwan. 

Our completeness assessment used both unit-based and object-based methods. 
As we found that there were duplicated polygons with various resolutions (Figure 
7b), we concluded that the object-based method can deal with such errors better 
and reflect actual completeness. A reminder here is that processing to delete 
duplicated polygons can increase the accuracy of results. Future refinement of the 
overlap method should consider this issue. This processing might also be a 
requirement for the OSM contributor community. 

As for completeness in different areas, we found that the areas with highest 
completeness were located in the CBDs, particularly a district with important 
transport and education facilities. Comparing our results to a previous study in 
Germany (Hecht et al., 2013), the completeness of building footprints in Taiwan 
was a bit lower; a visible difference can be perceived on OSM. Since the population 
density in Taipei and Taichung is much higher than the German states, this 
indicates that the Taiwanese OSM’s contributor community has lacked sufficient 
motivation to map building footprints. 
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An interesting finding is that OSM building footprints have higher resolution than 
the reference dataset in several districts of Taichung. Figure 9 shows a visual 
comparison between OSM and the reference dataset around the Nantung district. 
Using the OSM dataset, a user can locate a specific building easily. Some building 
footprints even possess an address tag. The high-resolution building footprints in 
Taichung can provide more utility in the scenario of disaster management. For 
example, the emergency sectors need building data in high resolution to locate an 
exact building boundary for operations. The reference datasets do not fulfill this 
need (i.e. current building data in Taiwanese emergency management information 
system are provided by the private sector). Although the completeness of OSM 
building footprints is not good enough, they have great potential for research use, 
as high-resolution building data are often limited by access. 

Figure 9:  The OSM building footprints have higher resolution than the reference 
dataset in Taichung (Base Map ©2016 Bing, ©2016 Google) 

  

OSM The reference dataset 

 

Further checking the production process of these building footprints through an 
inquiry in the OSM contributor community, we found that the features were mapped 
from a project by the Department of Landscape and Urban Design at the Chaoyang 
University of Technology. The students used the JOSM (Java OpenStreetMap 
Editor) governmental address data service, and Google Maps with ground surveys 
to digitalize the building footprints. The integration of various data and techniques 
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helped contributors map high-resolution data. This implies that the education 
system itself might be the key to quality improvement of OSM. However, these 
high-resolution data are only available in a few districts and most building areas 
outside CBDs are not mapped. This causes inconsistency. Besides, from our 
topological error and geometric accuracy assessment, we addressed two issues: 
(1) various topological errors, particularly duplicated polygons, and (2) the fact that 
most building footprints are under-represented. The simplified OSM building 
representation raises a complicated question: how good is good enough (see: 
Figure 9)? We further applied visual analysis of OSM in several cities, supposing 
that under-representation was a common issue. Perhaps OSM must develop a 
better standard for building representation and mapping. 

Although the quality of OSM building footprints is not as great as authoritative data, 
it still has the advantages of open and free access. This study addresses that OSM 
data have the potential for finer resolution than other data sources. One lesson 
learned from this case study is that promoting OSM in education can enhance its 
quality. For example, if high school students can learn the fundamentals of OSM 
skills to edit and map evacuation buildings on OSM, this can help students learn 
about their living environment for disaster prevention. This strategy can help 
achieve the vision of OSM, that everyone and anyone can access underlying 
geodata freely, as well as enabling a resilient society. While from the point of view 
of geospatial education, we have to remind ourselves that such teaching plans 
must be promoted in both the global and local OSM communities. 
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