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Abstract 

Historically business enterprises have been gathering data as part of their 
“business as usual” operations. The evolution of the digital era has both 
enhanced this capability and increased the rate at which data is collected at 
unprecedented levels. The parallel evolution of spatially enabled data, data 
analytics and the visualisation of data presents opportunities to analyse 
spatio-temporal databases to a degree never before available. This ability 
provides the opportunity to incorporate the results of this analysis into 
corporate planning processes, policy and strategy development and risk 
identification and mitigation.  However, this new capability may also identify 
deficiencies in historically utilised databases which have led to poor decision 
making and setting of policy and strategy that has unknowingly limited 
business performance, misdirected capital investment and impacted 
resource utilisation.  

This paper will address these issues by understanding the concept of 
“concurrency” in database visualisation via a spatially enabled decision 
support tool developed by the Centre for Disaster Management and Public 
Safety (CDMPS), the University of Melbourne. A special case study is 
performed to analyse historic incidents and explore response capacities 
across Victoria. A snapshot of emergency management data has been 
subjected to data cleaning, aggregation and harmonisation processes to 
support our proposed analysis methodology. The output identifies key 



components such as demands and supplies. Each of these components 
can be investigated at various temporal granularity levels such as daily, 
monthly and yearly. Besides statistics, the developed tool can also 
interactively manipulate the results on a 4D visualisation engine by using 
dynamic demand-supply heat maps and spider webs that precisely describe 
the concurrent characteristics. The developed system helps decision 
makers better understand when and where demands are triggered and how 
supplies are distributed in busy seasons and eventually identify research 
priority needs to enhance their workforce planning capability. 

Keywords: spatio-temporal data analysis, disaster management and 
decision making, 4D visualisation. 

 

1. INTRODUCTION 

Disaster and emergency management is a global practice the need for which is 
rapidly growing to deal with events caused by environmental and or human 
intervention. The quality of the outcomes from the management of individual or 
multiple emergencies with their potential to scale to major disasters relies on the 
quality of the decision making processes underlying the preparation for, response 
to and the recovery from these events. Traditionally these processes have relied 
on personal experience and training is supplemented with information from 
disparate databases that is often not readily accessible. 

The emergence of today's and the future’s digital and IP based environment will 
continue to significantly change this situation so that the quality of outcomes and 
their associated decision making processes can be transparently examined, 
evaluated and improved using spatially enabled data, data analytics and 
visualisation tools. Importantly the application of these tools to historic databases 
should be expected to expose deficiencies in the data and data collection 
processes which will need rectification, particularly where these databases inform 
policy decisions and strategy development associated with the allocation and use 
of high-value discreet resources. A big challenge here is how to reveal the 
characteristics of spatio-temporal enabled data in an interactive and intuitive 
fashion (CDMPS, 2014; Rajabifard et al., 2015). It requires sound knowledge of 
data, articulated analysis methods and elaborate visualisation means.  

This paper provides information about the methodology used to produce a set of 
tools for spatio-temporal database analysis and visualisation, especially to facilitate 
decision making process. The Centre for Disaster Management and Public Safety 
(CDMPS) in the University of Melbourne was engaged by Volunteer Fire Brigades 



Victoria (VFBV) to develop a suite of such tools that could be applied to a sample 
from the Fire Incident Reporting System (FIRS) developed and used by the 
Country Fire Authority (CFA) in Australia to record data resulting from use of Fire 
Brigades in the management of major bushfires in the State of Victoria in Australia. 
The developed tools may be applied to the management of high-value discrete 
resources i.e. the lives of those involved in public safety activities that underpin 
community resilience to emergencies and disasters. 

2. METHODOLOGY 

We start a spatio-temporal analysis from tackling the temporal attributes. Usually, 
temporal values are treated as continuous variables; therefore, attributes directly 
attached to each time frame could be too sparse to form patterns. This indicates 
that a time window is required, within which non-temporal attributes can be 
aggregated (or accumulated) so that their characteristics are more identifiable. 
Here the concept of “concurrency” is introduced to formulate a universal analysis 
framework.  

Given two timestamps t0 and t1 on the time axis T, where t0 < t1; then a time 
window is constructed and denoted as [t0, t1]. An event has a start time and end 
time denoted as st and et respectively, where st < et; then event lifespan LS can 
be denoted as [st, et] Figure 1 illustrates all six possible relationships between LS 
and TW, only four of them (green lines) can be considered as concurrent (or “on-
going”) events within TW, they satisfy either of following criteria: 

(1) st < t0 and et >  t1 
(2) st < t0 and et <  t1 
(3) st > t0 and et <  t1 
(4) st > t0 and et >  t1 

The criteria can be further simplified as: 

(5) st < t0 and et >  t0 
(6) st > t0 and st <  t1 

 

 

 

 

 



Figure 1 Time window and concurrent events. Four green lines can be considered 
as concurrent events within time window [t0, t1]. 

 

Thus, given a time window [t0, t1], all concurrent events within that period can be 
selected out by adopting either criterion (5) or (6). For a long LS incident, it 
contributes the count to each TW it crosses. For example, the top green line in 
Figure 1 represents an incident that starts before t0 and ends after t1. This 
incident’s LS covers two additional TWs before and after [t0, t1], therefore, it will 
be counted as a concurrent incident for each of three TWs. This process is a 
discretisation of continuous variables and can accurately measure the number of 
concurrent incidents in a given time window. The width of time window controls the 
granularity of discretisation, which also affects further spatio-temporal pattern 
analysis. There is no ubiquitous rule for picking granularity values. The decision 
highly relates to the temporal features of data as well as the goal of analysis. 
Setting an “impropriate” granularity might hinder the pattern identification process 
or impact the performance of analysis. In this work, to help VFBV identify temporal 
patterns for incident occurrence and resources allocation, three granularity levels 
(i.e., day, month and year) were selected to describe time windows. The raw FIRS 
data were also aggregated at these three levels respectively to speed up 
answering questions such as “which day is the busiest day in 2015” or “how the 
amount of distributed resources fluctuates in every January during the past 10 
years”.  

As for spatial analysis, besides classic methods such as clustering (Diggle, 2013, 
Sturup et al., 2015), autocorrelation (Griffith, 2013), regression (Fortin et al., 2012) 
etc., this part can be enhanced by using advanced 4D spatial visualisation techs 
(CDMPS, 2014), which are regarded as a highly effective and intuitive way to 
recognise and understand spatial patterns. Again, there is no best visualisation 
means for all cases, the selection of various visualisation means is subjected to 
different purposes. Each visualisation means has its own merits as well as 
disadvantages; therefore, when interpreting the outputs, we should be aware of 
their limits and pitfalls.   



 In following sections, we will take a real world database as an example, and 
demonstrate how to identify and interpret the spatio-temporal patterns by adopting 
proposed methodology.  

3. SAMPLE DATABASE – FIRE INCIDENT REPORT SYSTEM  

Victoria is a state in the south-east of Australia and it is one of the most bushfire 
prone areas in the world (Jones, 2011). Since the 1850’s community volunteers 
have come together to establish volunteer fire brigades and this led to the 
establishment of the Country Fire Brigades in January 1891 which was monitored 
by the Country Fire Brigades Board. Over the next fifty years, Victoria suffered a 
number of devastating bushfires including the 1926 Gippsland fire (60 fatalities), 
1939 ‘Black Friday’ bushfire in Narbethong (71 fatalities) and 1943/44 state-wide 
fires (51 fatalities and 700 injured) (Jones, 2011). The Stretton Royal Commission 
was established to conduct inquiries into the management of bushfires and this led 
to the establishment of the Country Fire Authority (CFA) on 2 April 1945 (Jones, 
2011). Since this time the CFA has grown to become one of the largest volunteer 
and community-based emergency service organisations in the world. The CFA 
manages over $240 million worth of assets and has an annual income of over $500 
million (CFA, 2014). 

One of the most valuable assets of CFA Victoria is the historical incident reports 
recorded in FIRS (Fire Incident Report System). Back to 1990, CFA Victoria had 
used FIRS to manage incident related information. It is a giant database and has 
accumulated over 1 million records of incident and brigade logs over decades. For 
incidents (i.e., demands), FIRS contains key information such as when and where 
they occur and how long they lasts; for brigade (i.e., supplies), FIRS records where 
they are, how many resources (e.g., trucks and personnel) are taken to incidents 
as well as how long the support last. FIRS is a classic spatio-temporal database 
and well suits for our proposed concurrency analysis methodology.   

3.1. Data Structure 

Five critical data tables from FIRS are investigated in this paper for concurrency 
analysis. The entity relation diagram is shown in Figure 2 with only key attributes 
listed. FIRS has evolved over years and its database schema was also adjusted 
for several times to support system compatibilities. Though its structure becomes 
obscure to understand, it won’t impede the data analysis process. 

3.1.1. Table firs_primary_report_header 

This table contains key information for an incident as well as its primary brigade, 
such as incident start time (incident_datetime), end time (stop_datetime), location 
(geom), its primary brigade id (brigade_no) and when its primary brigade is notified 
(brigade_advised_datetime). 



3.1.2. Table firs_support_report_header 

This table contains information for all support brigades of incidents, such as 
support brigade id (brigade_no), when a support brigade is notified 
(brigade_advised_datetime).It links to the incident table using foreign key 
(primary_report_id).  

3.1.3. Table firs_brigade 

This table contains information of brigades, such as name (brigade_name) and 
location (geom).  

3.1.4. Table firs_report_resource 

This table contains trucks dispatch logs for both primary and support brigades. It 
uses report_type_flag attribute (‘P’ for primary and ‘S’ for support) to differentiate 
which report header table its report_id should reference to. It also contains the 
timestamp for when a truck is sent out (mobile_datetime) and when it returns 
(in_station_datetime). 

3.1.5. Table firs_report_personnel 

This table contains people dispatch logs for both primary and support brigades. 
Similar to table firs_report_resource, it also uses report_type_flag attribute (‘P’ for 
primary and ‘S’ for support) to differentiate which report header table its report_id 
should reference to. However, it does not contain timestamps for when a person is 
sent out and when he returns. 

Figure 2 Entity relation diagram for FIRS key tables. Only key attributes for each 
table are listed. 

 

 



3.2. Data Preparation 

For this research, CFA provided us with a database backup file containing the five 
selected data tables. It comprises all incident and response logs recorded between 
July 1999 and April 2016. Current FIRS utilises MSSQLServer as its database 
which lacks spatial data structure, storage and analysis support and is not useful 
for our work. PostgreSQL is an open-sourced, object-relational database system 
and with its PostGIS plugin, it supports for geographic objects (e.g., point, line, 
polygon primitives) and can be used as a spatial database for geographic 
information systems (GIS). We set up a PostgreSQL server on the NecTAR 
Research Cloud and used the following steps to port data from MSSQLServer to 
PostgreSQL: 

1. Restore backup file to an instance of MSSQLServer 
2. Create functions to dump data into PostgreSQL INSERT script files  
3. Create data table schemas in PostgreSQL 
4. Execute INSERT script files 
5. Create point geometries based on values 
6. Create (spatial) index for each table 

From 1999 to 2016, FIRS has collected 688,910 incident reports attached with over 
1.73 million trucks and 8.28 million personnel allocation logs respectively. With the 
assistance from the FIRS database admin from CFA, attributes incident_datetime 
and stop_datetime in data table firs_primary_report_header are selected to 
identify incident start time (st) and end time (et). However, a further data check 
shows that about 8% incident records have invalid stop_datetime value, either it is 
an empty value or it contains a time before incident_datetime. The data quality 
problem is most likely caused when manually logging information into FIRS. 
Though the proportion of issued records is relatively low, it does affect the 
understanding and judgment of surge analysis outputs, particularly when the 
results are visualised on map. To overcome this, we used the 
last_truck_return_time (ltrt) of an incident to correct its end time if its original value 
is problematic. After the correction process, 99.3% incident records have valid st 
and et values and are ready for surge analysis.  

Similarly, for the truck operation logs, we selected mobile_datetime (st) and 
in_station_datetime (et) from data table firs_report_resource to measure the 
period a truck committed to supporting an incident. However, FIRS does not 
specifically record the time involvement for personnel. It cannot identify when a 
CFA employee (or volunteer) is devoted to an incident and when he retreats from 
it. To measure the personnel allocation over time, we assume that all FIRS 
recorded personnel from a brigade are allocated to an incident from 
brigade_advised_datetime (st) of brigade till stop_datetime (et) of the incident. This 
might overestimate the actual number of involved personnel at a given time period 



at brigade level, but certainly, gives a right indication of how personnel resources 
are allocated during the entire incident lifespan. 

3.3. Data Aggregation 

The main purpose of data aggregation in this work is to avoid complex database 
queries that will be repetitively executed in the application runtime. Aggregation 
data will also boost the performance of surge analysis.  

By using the concurrency concept described in the previous section, nine 
aggregation data tables are created by crossing three aspects (i.e., incident, truck 
and personnel) in surge analysis with three granularity levels (i.e., year, month and 
day), as Table 1 shows. 

Table 1 Nine FIRS aggregation tables. 18, 204 and 6210 records will be created in 
each table if it is aggregated by year, month and day respectively.  

 Year (18) Month (204) Day (6210) 

Incident aggr_incident_y aggr_incident_m aggr_incident_d 

Truck aggr_truck_y aggr_truck_m aggr_truck_d 

Personnel aggr_personnel_y aggr_personnel_m aggr_personnel_d 

 

All aggregated tables share similar data structure with three key columns st, et and 
total_num. Surge peak analysis in section 4.1 will directly come from these tables. 

3.4. Data Visualisation  

Besides charts and statistics, it is imperative but more challenging to reveal the 
spatio-temporal patterns on the map to decision makers in an interactive and 
intuitive fashion. In this work, we introduce dynamic heatmaps, demand-supply 
lines and a set of queryable map markers to visualise surge interactively on a 4D 
map.  

3.4.1. Incident (Demand) Heatmap 

Incident heatmaps are ideal to illustrate spatial distribution patterns of incidents’ 
concurrency intensity. It becomes a particularly useful when a set of time serial 
heatmap frames are stitched together so that the continuous change patterns can 
be observed. To build a single frame of the incident heatmap, the algorithm takes 
incident location and intensity aggregated at a given time period as inputs. The 
location of the incident is described by its longitude-latitude coordinate, which will 



affect the heat cores’ location. The intensity value of incident can be designated 
either as the total number of trucks or as the total number of personnel (default 
option). This parameter affects the coverage radius of heat cores. 

3.4.2. Resource (Supply) Heatmap 

Similar to incident heatmaps, resource heatmaps depict the spatial distribution 
patterns of concurrent allocation of resources. Unlike incident heatmaps which are 
created by using incident parameters, resource heatmaps are built upon brigade 
parameters including its location and the amount of its committed resources (the 
total number of trucks or personnel). 

3.4.3. Demand-Supply Line 

Heatmap offers an overview of the changing patterns of demand-supply spatial 
distribution over time; however it fails to reveal the relationships and details of 
demand-supply at a finer level. For example, by using heatmap only, we cannot 
tell where exactly the resource supplies of a single incident come from, nor can we 
tell which incidents a brigade is supporting simultaneously. Therefore, we introduce 
demand-supply lines to illustrate this missing nexus. 

As its name indicates, a demand-supply line connects an incident to all brigades 
that send resources to it. From a brigade’s standpoint of view, this line also shows 
all incidents that it is committed to at the same time. The demand-supply lines form 
a spider-web-like structure and reveal complex linkage patterns between incidents 
and brigades. In this work, we use the line width to illustrate the strength of the 
connection, which can be presented as the total number of trucks or personnel. 

3.4.4. Queryable Map Markers 

To make visualisation self-explained, we introduce a series queryable map 
markers, they are summarised in Table 2. If a brigade responds to multiple 
incidents simultaneously, multiple brigade markers will be created around the real 
location of the brigade so that demand-supply lines can be connected individually.  

Table 2 Map marker icons and descriptions. 

Markers  Description 

 
Incident marker 

 
Primary brigade (pink) and support brigade (blue) 

 
Brigades that only send personnel (P) to an incident 

 
Brigades that only send truck (T) to an incident 



 

Brigades that respond but not (N) send any resources to an 
incident 

 

4. INVESTIGATION ON BLACK SATURDAY BUSHFIRES 2009, VICTORIA 

The Black Saturday Bushfires were a series of bushfire started around the 7th of 
February 2009 in Victoria, Australia. It is the worst bushfire catastrophe in Australia 
history and killed 173 people, injured 414 people, destroyed 2,100 homes and 
displaced 7,562 people (BSB, 2014; Victoria Police, 2009). It is estimated the 
energy released by the Black Saturday Bushfires, was the equivalent of 1,500 
Hiroshima atomic bombs and 1.1 million acres were burnt in total (Cameron et al, 
2009; BSB,  2014).   

Black Saturday provides a good example for investigating surge behaviour. In the 
following section, we articulate the analysis outputs during the period from 4th to 
28th of February 2009.   

4.1. Surge Peak Analysis 

Figure 3 shows a single peak of concurrent incidents on the 7th of February 2009. 
On that day, FIRS recorded 407 incidents happened in parallel. The number 
plunged over the next three days till 10th of February and then fluctuated at 150. 
For CFA Victoria, the average daily concurrent incident number in busy season 
(from January to March) is 129 and for the rest of year, the number is 101. Given 
this, the critical fire situation in February 2009 was clearly a huge challenge to CFA 
Victoria. 

Figure 3 Concurrent incident (blue line) analysis on Black Saturday Bushfires, from 
4th to 28th February 2009.  

 

In Figure 4, the concurrent trucks usage is turned on (green line), which tells the 
same story. The number increased sharply on 7th February to 2035, which is four 
times of 504 recorded on 6th February. The concurrent truck usage well correlates 



with the number of concurrent incidents. For CFA Victoria, the average daily 
concurrent number of the truck on road in busy season (from January to March) is 
367 and for the rest of year, the number is 250. It demonstrates that the CFA were 
under great pressure of resource allocations during the Black Saturday period. 

Figure 4 Concurrent incident (blue line) and truck (green line) analysis on Black 
Saturday Bushfires, from 4th to 28th February 2009. 

 

In Figure 5, the concurrent number of personnel (red line) allocated is also 
appended. Although the numbers are distorted due to our assumption, from the 
people resources perspective again, CFA was also stressed in February 2009. For 
CFA Victoria, the average daily concurrent number of people allocated in busy 
season (from January to March) is 4262 and for the rest of year, the number drops 
to 2051. The red line remains four times above the average number of busy season 
for two weeks and then follows by two more peaks appeared on 23rd and 27th of 
February. This indicates how exhausted CFA staffs were in that critical period. 

Figure 5 Concurrent incident (blue line), truck (green line) and personnel (red line) 
analysis on Black Saturday Bushfires, from 4th to 28th February 2009. 

 

 



4.2. Surge Visualisation 

We ran a surge simulation for Black Saturday Bushfires from 4th to 28th February 
2009. A series heatmaps were generated to illustrate the spatial distribution 
patterns of demand and supply over time. Our developed system can fluently and 
interactively visualise the continuous change patterns and offer an intuitive 
understanding of the surge behaviours. In this paper, the outputs of four days (4th, 
7th, 15th and 23rd) were selected and put together to demonstrate the capability of 
surge analysis.   

Figure 6 shows the incident heatmap over four days. On 4th February, main 
incidents (red areas on the map) concentrated in the mid of Victoria, but on 7th, the 
situation deteriorated in the mid and started sprouting to the east region. Isolated 
but critical incidents were reported in the north-west part as well. One week later 
on 15th February, the situation cleaned up particularly in the mid and east regions; 
but on 23rd February, the situations in west and east regions became worse again. 

Figure 6 Incident heatmaps on 4th, 7th, 15th and 23rd February 2009. Red areas 
represent the location of major incidents and blue areas indicate the location of 

minor incidents. 

 

Figure 7 shows the surge from the resource (i.e. personnel) supply perspective. 
CFA Victoria has 1724 brigades distributed across the entire state. On 4th February, 
the significant resources (white areas on the map) were mainly allocated to the mid 
and east regions; we can see there are widely scattered, insignificant supply dots 



in the west and north part of Victoria as well. But the situation changed dramatically 
on 7th February. The mid, north-east, south-east and south-west were all under the 
pressure of significant supply. The situation remained intense and did not notably 
mitigate in next two weeks. This visualisation heatmap is well aligned with the 
surge peak analysis outputs shown in Figure 5, and it reveals how widely the 
brigades in Victoria were affected during the disaster. 

Figure 7 Resource (personnel) heatmaps on 4th, 7th, 15th and 23rd February 2009. 
White areas represent where significant supplies locate and blue areas indicate 

where insignificant supplies locate. 

 

Figure 8 overlaps the demand and supply heatmaps on one picture. It seems that 
both heatmaps well fit with each other geographically, especially in the mid region. 
It might give a wrong impression that supplies for incident mainly come from local 
brigades. Actually, that is far from the truth in Black Saturday. 

 

 

 

 

 

 



Figure 8 Overlap incident heatmaps and personnel supply heatmaps on 4th, 7th, 15th 
and 23rd  February 2009. 

 

The demand-supply lines (yellow lines on the map) are drawn in Figure 9, which 
demonstrates the linkage between incidents (red marker) and brigades (blue/pink 
flags). On 4th February, resources located in the far west and north region were 
dispatched to support incidents in the mid and east regions. The long yellow lines 
indicate that the supplies came from distant brigades rather than local ones. In the 
following days, more brigades got involved in the north and west part to support 
both local and remote incidents. Figure 10 gives a detailed view of the demand-
supply lines. On the map, a significant incident drew resources from 605 brigades 
across Victoria; the width of yellow lines stands for the number of people 
dispatched from each brigade. Quantitative incident information such as start-end 
time, number of involved brigades, personnel, trucks, average travel distance, etc. 
is accessible by clicking the incident marker on map. Comprehensive brigade 
response data including number of dispatched personnel, trucks, attendance time, 
support duration etc. is presented in a similar way. 

 

 

 

 



Figure 9 Demand-supply lines (yellow) on 4th, 7th, 15th and 23rd February 2009. Table 
2 shows the marker legend information. 

 

Figure 10 A detailed view of demand-supply lines (yellow) on 7th February 2009. 
Table 2 shows the marker legend information 

 

5. CONCLUSION 

This paper proposed a new methodology for exploring the concurrency 
characteristics hidden in spatio-temporal databases. Taking the Fire Incident 



Report System (provided by CFA Victoria) as an example, we started from scratch 
and went through each step of data preparation and data aggregation. Then we 
successfully developed a 4D online system and performed surge analysis for the 
Black Saturday Bushfires in 2009. The analysis results and visualisations intuitively 
reveal the details about how the incidents and resources were managed during the 
fatal calamity in Australia. It also strongly demonstrates the capabilities, 
effectiveness and potentials of our developed system as a spatially enabled 
decision support tool for stakeholders.  
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