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Abstract 

 

The paper presents the research of approaches to spatial risk modeling of 
accidents in the power system on the example of Ukraine. The study of the basic 
methods of mathematical modeling of accidents was conducted. The main factors 
that influence the occurrence of accidents were selected and analyzed. The 
modeling on the basis of Bayesian networks for several regions of Ukraine was 
carried out and verification of the results was conducted based on SDI Data. 
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1. INTRODUCTION 

Using the data of the national spatial data infrastructure in Ukraine for the study of 
risk assessment of critical assets is one of the most important applied problems. 
Relevant and comprehensive spatial data on climatic conditions, engineering 
networks, and accident statistics should be provided by mapping services and local 
management companies for selecting support solutions and predicting 
emergencies. 

The development of the spatial data infrastructure began with the preparation of 
the legal framework for the functioning of SDI in Ukraine in 2008. From that point 
on, a set of reforms that were and are carried out in the country transformed the 
understanding of spatial data infrastructure and created the mechanisms of 
institutional and technical implementation. The largest projects in this area should 



include the project of the World Bank regarding the establishment of the cadastral 
information system of Ukraine. The project was completed in 2012 and its key 
result was the cadastral map of Ukraine as the interface to the users and the 
provision of services. In addition, a number of data geoportals regarding 
administrative-territorial structure, agrarian sector, and natural resources were 
developed in the country. The Canadian government is supporting the 
development of Ukrainian SDI in the framework of the project “Laying the 
Foundation for a Spatial Data Infrastructure: Building Capacity within the Ukrainian 
Government to Support Sustainable Economic Growth”, the Japanese government 
provides technical assistance to Ukraine, JRS and EuroGeographics by 
conducting trainings and seminars in Ukraine. The ecosystem of organizations has 
formed in Ukraine because of these efforts, which includes support and 
development of SDI on the national and regional levels. The main organization in 
the field of SDI is the State Service of Geodesy, Cartography and Cadastre, which 
consists of a number of subsidiaries. The main direction of political development is 
the integration with European organizations in the field of SDI and data 
harmonization under the INSPIRE directive. 

Energy security manifests itself in the ability of the country to ensure the most 
reliable, technically safe, environmentally acceptable and reasonably sufficient 
energy provision for the economy and the population under the current and 
forecasted conditions (Shevtsov et al., 2002; Barannik, 2008). Safe functioning of 
the electric power system is one of the most important factors of energy security. 
Naturally, security is a complex political, economic, socio-economic, and scientific 
problem, which requires complex research of a wide range of issues. 

The electric power system consists of a great number of objects and entities. The 
key ones are the power generating facilities and transmission networks. Hazardous 
situations (accidents) in the electric power system objects are usually caused by 
defects in the manufacture and operation of the equipment, personnel errors, and 
other factors leading to the forced termination of electricity supply, which 
constitutes a threat to the society. 

The majority of the electric power transmission networks are the overhead power 
lines, therefore there is a threat of adverse climatic factors impact on the power 
transmission network components. Extreme climatic conditions lead to power lines 
accidents, so analysis of climate impacts on the power transmission network and 
prediction of consequences of such impacts are an integral part of the system 
security problem. 

Accident statistics shows that more than a half of the failures of overhead power 
lines are caused by the ice and wind overloads on wires, cables and other 
structures (Horokhov et al., 2005). In general, they are the result of an 
underestimation of the actual ice and wind loads. The essential difference between 



overhead power lines and other power system objects is their greatest length. The 
total length of the transmission lines with voltage of 0.4–110(150) kV is 817.9 
thousand km (Power Grid Technology Policy in Construction of High Voltage 
Distribution Networks, 2011). 

Modeling of overhead transmission lines accidents caused by climatic factors and 
further forecasting of the number of accidents will be addressed in the article. The 
study of previous researches in the field of probabilistic accidents modeling shows 
that there are numerous methods of modeling, and regression analysis is used the 
most often. Currently, data mining methods that include neural networks, clustering 
algorithms, pattern recognition methods, a nearest neighbor methods, are used. 

The paper addresses the development of the accidents model of the power system 
of Ukraine, namely overhead power lines, under the influence of climatic impacts 
as part of the security of the electrical energy system of Ukraine. 

Current studies of impact of climatic factors on overhead power lines are limited to 
calculations of load of climatic factors on the overhead transmission lines, so the 
problem of conducting a comprehensive study of accidents probability under the 
influence of climatic factors is important. The novelty of the task lies in application 
of the existing mathematical tools to study accidents in the electric power systems 
under the influence of climatic factors and in use thereof to forecast the state of the 
electric power system of Ukraine. 

2. PROBLEM STATEMENT 

Aging of transformer substations equipment and constituent elements of 
transmission lines, and deteriorating climatic conditions in Ukraine lead to higher 
accident rate and energy losses in the power system equipment, causing an 
increased number of shutdowns and failures, most of which occur in the 0,4–10 kV 
network (Power Grid Technology Policy in Construction of High Voltage 
Distribution Networks, 2011). The most crucial in terms of the scale of accidents 
caused by climatic factors are ice formations and wind load. According to 2.5.30 
(Rules for Electrical Installation, 2006), values of ice and wind loads and climatic 
impacts for calculation and selection of overhead power lines design are taken 
from the regional climatic zoning maps of Ukraine, with further adjustment based 
on data gathered by meteorological observation stations and observation posts 
regarding wind speed, ice intensity and density, temperatures, storm activity and 
other climatic phenomena. 

2.1. History of the Problem 

In recent years the number of power lines accidents increased significantly. A 
major accident in the Odesa region, accidents in the Zhytomyr and Volyn regions 



and others pointed out the necessity to review the impacts of climate loads on the 
power system in Ukraine and to create new zoning maps for climatic impacts. 

Climatic zoning maps are maps of the territory divided into zones (areas) in terms 
of climatic impacts. In the latest version of Rules for Electrical Installation (2006) it 
was decided to use a scale with 7 areas of loads. The pre-existing methods of 
climatic zoning mapping envisaged consideration of phenomena with 10 years 
repetition period, but in the course of further studies it was found out that periods 
of recurrence of many phenomena were 11–13, 34–37 years (Climatic data for 
determining loads on overhead transmission line, 2008), therefore it was decided 
to take into account phenomena with 10, 25, 50-year recurrence periods. The new 
technique (Climatic loads, 2007) contains several innovations: weather station 
selection algorithm, prior data processing approach, form of the maxima 
distribution function, and observation data analysis approach. 

2.2. Reasons for the Study 

A program of scheduled transmission line reconstruction is currently being 
developed in Ukraine, so the problem of accident prevention arises. Ice and wind 
loads often cause power lines accidents. Because of the considerable weight of 
ice formations on wires, accidents also involve cascading collapse of towers. The 
main period of ice formation and sediment is the cold season, so interruption of 
power supply leads to the cessation of heating, and the restoration of power lines 
after accidents becomes much more difficult. The main method of preventing ice-
caused accidents is a method of melting ice formations on wires (The Development 
of a US Climatology, 2002), which requires accurate knowledge of the ice 
deposition sizes, rate of formation and regional distribution thereof, so application 
of this method is considerably limited. 

Thus, there is a problem to determine climatic conditions that lead to accidents. 
There is also a pressing issue to track ice distribution, communication and 
processing of real-time data to determine the need to run the ice melting process. 

2.3. Input Data 

To research overhead transmission lines accidents caused by climatic factors, the 
following input data are used: 

- observations of weather stations of Ukraine regarding ice and wind events 
for the 1961–2012 period (Meteorological reviews, 2015) obtained in the 
Central Geophysical Observatory; 

- geographical database of basic layers of Ukraine from the NSDI database 

- x, y, z coordinates of the meteorological stations in Ukraine from the 
Meteorological Service. 



- statistics of accidents (Development of Measures to Achieve Reliability 
of Power Networks under the Influence of Ice and Wind Loads in the 
Territory of Ukraine by Regions, 2009). 

These observations of ice and wind events consist of data and characteristics of 
observations: the coordinates of the weather station, case number, type of 
sediment, beginning of icing (starting date, day, time of onset), growth duration of 
the icing event, the deposition parameters (diameter, thickness, weight), 
meteorological data at the beginning of the icing, and after reaching the maximum 
size (temperature, wind speed and direction). The period of ice observation runs 
from early autumn to late spring. Observations of wind speed include: 
characteristics of the weather station, wind speed (average and maximum), 
incidence rate by speed (number of cases for each value of the wind speed). The 
period of observation of wind speed lasts all year round. Data on accidents are 
presented in the following form: name, region, energy system district, name and 
characteristics of the line, date of the accident, absolute altitude of the accident 
area, characteristics of sediments, wind characteristics at the moment of failure, 
icing and wind observation data from the nearest weather station. In the above 
form, the accident rate data are available for the 1961–2015 period. 

2.4. The Mathematical Formulation of the Problem 

Nowadays studies of climate impacts are of exclusively applied nature, i.e. 
methodologies for determining the load on the transmission line constructions. 
Probabilistic modeling of overhead power line accidents under the influence of 
climatic factors was not performed. Thus, the challenge of constructing a model of 
accidents under the influence of climatic factors allows to: 

– identify the main places of accidents, investigate the frequency, the main period 
of their occurrence, and their quantitative characteristics; 

– classify accidents and conditions of their occurrence by territorial and temporal 
characteristics; 

– identify the main climatic conditions in which accidents occur and use such data 
in rapid response systems; 

– identify other factors that influence the occurrence of accidents, seasonality, 
technical state of lines, influence of the terrain; 

– predict accidents; 

– create maps to display the current statistics and forecasts. 

In addition to the above requirements, a model must meet the requirements of 
adequacy and sustainability. 



From the mathematical point of view, the problem of constructing models of 
accidents represents a problem of processing a large bulk of statistical data. Since 
the original data is represented as time series, any statistical methods of analysis 
of numerical series can be used to analyze and process them. Typically, for 
processing such data, methods of regression, correlation analysis and predictive 
analysis are used. Model construction is the task of the accident image recognition, 
i.e. division of all data on climate impacts into two classes: those that led to the 
accident and those under which the accident did not occur, and the subsequent 
identification of the main features of the accident. The problem requires finding the 
major climatic factors that affect the accident, and other impacts (seasonality, 
technical condition, type of terrain, etc.). 

2.5. The Mathematical Models of Research 

The model is a simplified representation of the system operation in the real world 
and represents the mathematical expression of the phenomenon. The research 
includes modeling of transmission lines accidents under the influence of climatic 
factors, based on pattern recognition methods. It should be noted that the 
meteorological observations data are not evenly distributed, which limits the use of 
regression and correlation analysis for modeling of power lines accidents. The 
basic models that can be used for accident modeling are presented below. 

2.5.1. Regression models 

The basic regression models used in the accident analysis are the Poisson 
regression model and a negative binomial distribution (Bendat and Piersol, 1989). 
Because of the strong nonlinearity of internal connections between variables that 
affect the onset of an accident, it is proposed to use methods of mining of statistical 
data on accidents (e.g. neural networks) instead of regression methods. 

2.5.2. Data mining 

The main methods of data mining are neural networks and Bayesian methods. The 
purpose of such network types is to create a model that correctly holds 
correspondence between inputs and outputs, using historical data, and, based on 
this correspondence, is able to make conclusions about the results, even if the 
desired results are not set, i.e. carry out pattern recognition (Yasnytskyi, 2005). 

Probabilistic neural network. This type of networks provides a general solution to 
the classification problem, following the approach developed in statistics and called 
a Bayesian classifier. The Bayesian theory takes into account the relative 
probability of events and uses a priori information to improve prognosis. Using a 
neural network has the following advantages: no need of information about data 
distribution; application for multidimensional nonlinear problems; transformation of 
variables in the process of calculation. However, this method has some drawbacks: 
excessive error minimization requires a lot of computational power; individual 



connections between output variables and outcomes are not identified, the model 
is a "black box". 

Bayesian approach. The Bayesian approach represents a probability model that 
uses a priori and a posteriori probabilities with features to predict the probability of 
accidents using statistical data (McCollister et al., 2007; Ma, 2006). The Poisson 
distribution is commonly used. The main disadvantage of this method is that an 
accident probability distribution must be input, but accidents are not always 
distributed in accordance with a certain fashion. 

Nearest neighbor algorithm. The nearest neighbor algorithm is a classification 
method in which the class of the unknown object is determined by comparing it to 
all known objects stored in the database of recognized objects (Zagoruiko, 1999). 
The degree of similarity between objects is determined by the function called the 
distance function. To recognize an accident, two different functions can be used: 
the Euclidean distance and the metric based on the difference between values. 

3. BAYESIAN BELIEF NETWORK 

Most methods used to simulate failures require prior knowledge of the accident 
parameters distribution functions. In most situations, distribution data are not 
directly available, but instead, statistical dependency or independence between 
variables is known. In case of accidents, relation between the weight of ice and the 
number of accidents, dependency between wind speed and air temperature, and 
weight of ice deposits can be known. Internal connections can be represented by 
conditional probabilities that can be used to determine the probability of accidents 
under certain conditions. 

3.1. The Best Option Choosing 

The Bayesian network combines graphical structures (nodes representing 
variables and arcs expressing probabilistic dependencies between them) and 
corresponding conditional probabilities, which provides a comprehensive visual 
representation of different conditional relations between variables (Cheng et al., 
2001). Local probability distributions are associated with each variable, and a set 
of independent conditions are represented in the network and can be directly 
combined to construct the overall probability distribution function for the entire 
network, which greatly simplifies the calculation of a posteriori probability variables. 

The probabilistic structure is well illustrated (Duda et al., 2000). For example, it is 
necessary to determine the probability distribution for the variables d1, d2, ...... to 
D (Fig. 1) using the table of conditional probabilities and the network topology. 

  



Figure 1. Bayesian network structure 

 

The distribution may be assessed by summing up the total general distribution, P 
(a, b, c, d) for all the variables except for d: 

   (1) 
where 

   (2) 
In this case, the network has a simple linear form; nonlinear networks (right side of 
fig.1) are calculated in a similar way. 

3.2. Mathematical Method 

There are two main types of Bayesian networks — simple Bayesian networks and 
Bayesian networks with conditional probabilities. 

Simple Bayesian networks. This type of Bayesian Networks assumes 
independence between the variables of the model. Each variable must be directly 
related to the output variable. Despite the simple structure, these models are 
commonly used in practice. Let ω = (ω (1), ..., ω (n)) T be the vector that defines 
n states of the system, where ω (i) takes one of the C values ω1, ..., ωS, P (ω), the 
initial probability for n states of the system. Let X = (x1, ..., хn) be the matrix of 
features, which determines the feature vector Xi observed if the system is in state 
ω (i), p (x | ω) — this is the conditional probability of the density function for system 
states ω and feature set X. Using these notations, an a posteriori probability for the 
system ω is calculated as follows: 



   (3) 

Although (3) is a theoretical solution, in practice the calculation of (ω | X) can be a 
difficult task. If each variable ω(i) can take one of the values of C, it is necessary 
to consider Cn possible values of ω. Some simplifications can be made if the 
distribution of feature vector Xi depends only on one relevant system state ω(i) and 
independent of the other attributes and system states. In such a case the 
probability density p (x | ω) is calculated based on probabilities p (xi | ω (i)): 

    (4) 

Bayesian networks with conditional probabilities. This type of networks is used 
for graphical representation of relations between variables in the model. The table 
of conditional probabilities is developed for future use in forecasting. If variable B 
depends on variable A, then A is called an ancestor to B and B — a descendant of 
A. The set of all ancestors B is designated as parent(B) or pa(B). The quantitative 
assessment of parameters θ consists of the functions of distribution of conditional 
probabilities p (zi / pa (Zt)), which are required to determine the joint distribution p 
(Z1, Z2, ... Zn). Without prejudice to everything else, we can assume that variables 
Z1, Z2, ... Zn are arranged in set G in such a way that pa (Zi)   {Z1, Z2, ... Zn}. Using 

the following chain of rules, the joint probability distribution P (Z) can be 
represented as follows: 

    (5) 

The structure of G expressly defines a set of parameters θ, which is necessary to 
determine the joint distribution P (Z1, Z2, ..., Zn), because: 

   (6) 

This follows directly from the above definition of Bayesian networks. Thus, the total 
distribution can be defined as follows: 

    (7) 



Using a Bayesian network, a posteriori probabilities of some variables on the basis 
of initial probabilities of other variables are calculated. Thus, for a given set of 
attributes, Zi   Z, which was created for the set of values zi, the task is to compute 
a posteriori probabilities, P (Z2 | Z1 = z1, G, θ) on the set of variables Z2 within 
existing values Zi. 

Use of Bayesian networks as classifiers for prediction of a specific target variable 
(class variable) presents a particular interest. Thus, the problem of images 
classification (recognition) arises. The classification process uses variable P that 
can assume values c1, c2, ..... cm, and feature vector Z defined as {z1, z2, ... zn}. If 
an instance of Z is represented by a set of attributes {z1, z2, .... zn}, the classification 
purpose is to determine class ci, that includes Z. The network performance is 
measured on a set of test objects by calculating the classification accuracy, i.e. the 
percentage of tests for which the class is correctly identified by the network. 

Formally, a Bayesian network consists of a qualitative description of network 
structure G and quantitative probability distribution θ, which is defined over the 
network structure. The network model G(N, A) represents the directed acyclic 
graph consisting of nodes N and arcs A, where A   N × N. Each node I 

corresponds to a discrete random variable Zi within a limited domain ΩZi. A 
Bayesian network represents a joint probability distribution P (Z) = P (Z1, Z2, .... Zn). 

Network arcs represent the relations between the dependent variables. The arc 
from node I to node J represents a probabilistic dependence between Zi and Zj, 
and can be accurately determined by using the concept of ancestral node. 
Ancestor Zi, pa(Zi), Zi is the direct precursor to the structure of G. 

A Bayesian network is encoded by a set of statements that express probabilistic 
independence, making each variable Zi conditionally independent of its 
descendants (in the structure of G), taking into account the state of its ancestors, 
pa(Zi). Definition of conditional independence can be effectively determined from 
the network structure using the graph theory. 

The particularity of Bayesian networks is their ability to compactly encode a 
common probability distribution. The graphical structure of a Bayesian network 
model significantly improves clarity of a model, and various relations between 
attributes can be easily obtained. These features and the ability to encode causal 
relations of models make a Bayesian network a handy tool for accident modeling. 
Furthermore, this approach allows including knowledge into the network structure, 
especially in the form of causal information, which greatly simplifies the design of 
a Bayesian network and improves the understandability of the resulting model. The 
greatest advantage of Bayesian networks in comparison with other approaches is 
the possibility to use them as comprehensive solutions, as they can be easily used 
for decision-making and for selection of the next step (Nisbet, 2009). 



3.3. Mathematical Accidents Model 

To build a model of accidents caused by climatic factors, the following steps are 
required: 

– identifying model variables and relations between them; 
– building the structure of a Bayesian network and determining the possible 

values of variables and a priori probabilities based on equations; 
– training a Bayesian network and refining its structure (variables and their 

probability); 
– testing the model using data of accidents and meteorological observations; 
– using the model for predicting the occurrence of accidents on the basis of 

information about accidents. 

To simulate accidents and perform forecasting, the North-West area of the country 
is selected, namely the area of the Zhytomyr region, because that region is 
represented by the majority of climatic conditions, climatic zoning areas of ice and 
wind values and other climatic influences that occur in Ukraine (Meteorological 
reviews, 2015). Meteorological data of Zhitomir, Kyiv and Rivne regions are used 
for the analysis (Fig.2). 

Figure 2. Map of Ukraine with selected areas for research 

 

 

Definition of the variables for the model. Prediction of the accidents occurrence 
depends on collection and processing of data on accidents, including the selection 
of variables used in the structure model. The variables will be selected on the basis 
of knowledge about the possible causes of the accident. This includes a thorough 
analysis of literature and intuitive engineering knowledge. 



To simulate overhead transmission lines accidents under the influence of climatic 
factors, it is necessary to research the statistical data on accidents and 
meteorological data. Table 1 presents the factors affecting accidents and their 
possible values. 

Table 1: Analysis of accidents 

Factors Description Possible values  

Year of accident Observation period used for 
emergency situations 1960–2012 
years 

[1960 - 2015] 

Month of accident Ice and wind accidents often occur in 
cold seasons 

 1, 2, 3, 11, 12 

Type of ice deposit Ice and sediments type ice, hoarfrost, 
crystalline frost, 
etc. 

Ice growth period Defines the period of ice growth in 
hours from the beginning of the ice 
formation to the maximum size of 
deposit 

[1, 72] 

Duration of the event Assumes values from 1 to 150 hours [1, 150] 

Diameter The diameter of ice deposit (large and 
small), divided into 10mm sectors. 

[0, 10] ...> 72 

Weight Ice weight is measured in grams. 
Assumes value up to >256 

 [1, 16] ...> 256 

Air temperature Air temperature at the beginning of ice 
formation and at the moment it 
reaches the maximum size 

[-25; 2] 

Wind direction Wind direction at the beginning of ice 
formation. Specified in the rhumbs 

[1, 8] 

Wind speed Wind speed at the beginning of ice 
formation and after reaching the 
maximum size. Given in mps 

[0; 25] 

Extreme events Cases of extreme values during a 
year 

0, 1, 2 



Year of structural 
elements installation 

Determines the effects of physical 
state of the structures on accident 
occurrence  

 <1960 
1960-1990 
1990 - 2015 
n/a 

Classification Contains 2 classes: event considered 
to be an accident or not 

0,1 

Accidents model. The main feature of Bayesian networks is the ability to specify 
relations between variables. To simulate the accident, a model (Fig. 3) was built 
on the basis of the initial accidents, and then in the process of training and testing 
some initial connections were changed. 

Figure 3. The initial network of connections between factors 

 
The network shown in Figure 3 presents nodes and arcs. The nodes represent 
model variables, whereas the arcs define relations between variables. As it is 
stated, occurrence of accidents in the network depends on the following factors: 
ice weight, event duration and period of sediments growth, type of terrain, lifetime, 
wind speed during the maximum deposition, month of the accident, altitude and 
wind direction at the beginning and at the moment when the maximum ice size is 
reached. The variables were selected by analyzing information on the accident 
rate. 



About 20,000 events were used for simulation, 1,500 accident event records in the 
northwestern region of the country was processed. The initial probabilities for 
modeling were selected by analyzing the incidence of each variable of the model. 

3.4. Mathematical Solution for Forecasting 

Forecasting in a Bayesian network is based on the classical Bayesian classifier i.e. 
a statistically optimal classifier that minimizes the risk of misclassification (Duda et 
al., 2000). Any classifier attributes each observed data vector x to one of the 
predefined classes ωi, i = 1,2, ... n, where n is the number of possible classes. The 
effectiveness of many classifiers is limited by the number of data elements that 
vector x can contain, and by the number of possible classes n. The classical 
Bayesian classifier implements the Bayesian rule of conditional probabilities, for 
which probability P (ωi | x) that x belongs to class ωi is calculated as follows: 

    (8) 

where P (ωi | x) is conditional probability x of given set ωi, P (ωi) is the probability 
of getting data from class ωj and 

 .    (9) 

The Bayesian formula shows that observing the value of x it is possible to convert 
probability P (ωj) into an a posteriori probability P (ωj | x) — the probability that the 
system state is ωj, provided that the value of x was defined. 

Suppose there are two classes (the accident occurred or not). If there is 
observation x, for which P (w1 | x) is higher than P (w2 | x), the natural tendency is 
to expect that an accident will happen. Conversely, if P (w2 | x) in higher than P 
(w1 | x) we shall consider that an accident will not occur. Thus, to classify input 
vector x, it is necessary to fulfill the following condition: 

    (10) 

Verification of the model. The Bayesian network model was tested using a cross-
validation technique. In this method, the training set is divided into two groups — 
a set for evaluation (which is used to assess probabilistic models), and a set for 
checking (used to evaluate the performance of the constructed probabilistic 
model). The cross-validation method allows comparing the performance 
verification tests of the selected model on testing and training data sets. 



4. THE SIMULATION RESULTS 

4.1. Test Examples and Model Tests 

To simulate accidents, the following variables were used: ice weight, duration of 
the event and period of deposits growth, type of terrain, constructions lifetime, wind 
speed during the maximum deposition size, month of event occurrence, altitude 
and wind direction at the beginning and after reaching the maximum size of 
deposition. During the simulation, the initial relations between the variables of the 
model have changed. In particular, the factors that affect the accident rate were 
highlighted and other factors were discarded. 

The remaining factors of the model and impact on accidents include: deposit 
diameters, ice weight, wind speed at the beginning of the event and after reaching 
the maximum size, altitude and lifetime of overhead lines constructions. 

A Bayesian network defines different variables, dependencies between them, and 
conditional probabilities of these dependencies. BN can use this information to 
calculate the probability of various possible causes of the accident event. 
Conditional probabilities were calculated based on dependencies represented in 
the Bayesian network model that is shown in Fig. 8. The model shows that there 
are three nodes that require calculation of conditional probabilities. These are 
nodes C, F and H. 

  



Figure 4. Bayesian network for prediction of overhead transmission line accidents 

 

Node C: ice weight. The ice deposition weight for each case depends on the actual 
deposit parameters. The conditional probability for the weight of ice (C) and for 
large and small diameters (A and B) was calculated by formula (11). 

    (11) 

Node F: wind speed after reaching the maximum deposition size. Wind speed after 
reaching the maximum ice size depends on wind speed at the beginning of ice 
creation. The conditional probability for the wind speed at the ice maximum size 
(F), where the initial speed is (E), is calculated by formula (12). 

     (12) 

Node H: accident occurrence. The accident occurrence depends on the 
parameters shown in Fig. 4. The conditional probability of an accident is calculated 
by formula (13) 

   (13) 



4.2. Prediction Accuracy 

The forecasting accuracy was 78%. Data used for forecasting were not included 
into the training set. Such prediction accuracy is quite high for the network. During 
forecasting, errors in determination of accident classes are not equivalent, i.e. a 
false statement that an accident will occur is less important than the false statement 
that the accident will not occur. Since the follow-up steps to prevent accidents are 
carried out by a power system management worker, a false alarm will not cause 
undesirable results. Therefore, error class definition is considered separately 
(class 1 — accident and class 0 — no accident). The above prediction accuracy 
corresponds to the lowest precision — error of non-recognition of an accident. 

For the network training, a data set of 5,000 records was used, including 2,400 
records that constituted a training sample, and 1,200 records were used for cross-
testing of the model, and other records — for general model testing. 

 

 

 
  



Figure 5. Map of accident risks in Zhytomyr region 

 

5. DISCUSSION 

The increase in the number of cases affects to the distribution of probability weights 
that the expected event occurs. Therefore, the simulation of results are very 
dependent from the selection volume and accumulation of new cases. Results 
obtained using a Bayesian network can be considered of valid only for a 
predetermined space-time interval. Shifts in climatic conditions enable the 
distribution simulation results only in a limited area with similar conditions. The 
methods of spatial multi regression more may be suitable for a large variability in 
the changes of factors possibly. 



6. CONCLUSIONS 

The paper addresses the research of overhead power lines accidents in the power 
systems of Ukraine under the influence of climatic factors. The article presents the 
construction of a model of accidents under the influence of climatic impacts and 
prediction of emergencies onsets based on data from NSDI. Pattern recognition 
techniques, namely the Bayesian network, were used to simulate accidents. This 
method is based on calculation of a posteriori probabilities of model variables. As 
a result, a model of accidents under the influence of climatic factors was built, 
which constitutes a Bayesian network with given conditional probabilities and 
independent variables of the model. 

The following key results were obtained using the accident event prediction model: 
wind speed and weight of ice deposits are the main causes of accidents among 
the climatic factors, and other influences (among the selected variables) are 
lifetime of line structures and altitude; two groups of characteristics that cause 
accidents are revealed: large ice mass in the absence of strong wind pressure, and 
strong wind load with medium (in terms of the model) deposition weight. The 
predicted places of accidents occurrence coincide with the areas where accidents 
occurred in 80% of cases. 

The model allows to predict the onset of an accident. The maps created based on 
SDI data correspond to the events of accidents that were not used for model 
construction, but only for validation thereof. For the further development of the 
study, the following steps are proposed: inclusion into the model of other variables 
and relations between them to facilitate consideration of more factors and improve 
the prediction accuracy; extension of the results obtained in the study to all the 
regions of Ukraine, considering topography and climatic and other factors. The 
latter field of work requires additional research in climatology, because climatic 
conditions of certain parts of the country are exceptionally particular (the 
Carpathian regions). Further studies require application of state-of-the-art 
techniques in the field of restoration of damaged and missing information (Neill at 
al., 2009) and multidimensional discretization strategies that will reduce 
information losses, thus increasing the effectiveness of the models using the 
spatial database from SDI warehouses. 
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