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Abstract 

 

As-built Building Information Models (BIMs) have the potential to improve construction 
performance by replacing conventional documentation, facilitating greater access to site 
information and providing more accurate representations than models based on 
Computer-Aided Design (CAD) drawings. Applications using as-built BIMs to improve 
construction processes rely on efficient and accurate collection of data to emulate the 
dynamic nature of a construction site. Current methods used to collect and process data 
for building information models are time intensive or require specialist equipment. In 
contrast, applications based on computer vision only require a digital camera and can be 
run on a personal computer. The main aim of this study is to investigate the use of image 
processing to extract information about building geometries. In this paper, popular 
feature extraction algorithms in obtaining information about façade geometries such as 
corners and edges were assessed. The feasibility of identifying areas of windows from 
extracted geometries was also investigated, as locations and areas of windows are 
important in the energy analysis of existing buildings. A number of promising results were 
produced, however, further work is required before feature extraction can be considered 
as a viable alternative for collecting information for as-built BIMs. 
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1. INTRODUCTION 

The Associated General Contractors of America define Building Information Modelling 
(BIM) as “the development and use of a computer to simulate the construction and 
operation of a facility” (Ernstrom, 2006, p.3). In contrast to BIM based on Computer-Aided 
Design (CAD) plans, as-built building information models provide an accurate 
representation of site conditions at the time of data collection. Recently a focus has been 
placed on applications of as-built BIM which is being used to improve construction 



processes and site safety. Replacing conventional paper documentation, as-built BIM can 
be used for the design of extensions on existing structures while recently they have been 
used in automated systems that check compliance with construction specifications and 
existing conditions (Boukamp and Akinci, 2007). Automated rule checking systems have 
been used to check compliance with disability and fire standards (Delis and Delis, 1995) 
as well as applied to geometries and attribute characteristics stored in building 
information models to identify and display site safety hazards (Melzner et al., 2013). 

Applications based on as-built BIM also have the potential to assist with the Facilities 
Management (FM) of buildings. Becerik-Gerber et al. (2011) investigated applications of 
as-built BIM in the space management, visualisation and marketing (such as for animated 
walk-throughs) of existing buildings. They highlighted the importance of as-built BIM in 
the emergency management in buildings which can be used to locate dangers as well as 
identify evacuation routes and risks to emergency personnel. Key factors limiting the 
application of BIM in these areas were identified as large amounts of work needed to 
create the models and the lack of interoperability between BIM and FM systems.  

Traditional methods of collecting site information include the use of tape measures and 
total stations which can be time consuming or require specialist equipment. More 
recently 3D aerial or land-based laser scanners have been used to collect information for 
as-built BIM. Although these technologies enable the automated collection of many point 
measurements from a single site, there is currently no commercial software available 
which is able to perform all the processes that are required to construct a building 
information model from a point cloud, resulting in high time and labour costs especially 
for large projects. Tang et al. (2010) presented a review of the technologies attempting to 
automate the process of constructing as-built building information models from data 
collected from laser scans. Recently there has been a focus on the use of computer vision 
feature extraction to aid with the pre-processing of data, for example, by filling in 
occlusions caused by foreground obstructions (Frueh et al., 2005).  

The advantage of programs that rely on photogrammetry and computer vision is that they 
only require the use of a digital camera and personal computer, and they even have the 
potential to be developed to run on mobile phone applications. The purpose of this paper 
is to investigate the feasibility of using image processing algorithms to extract information 
about edges, corners and areas of windows from digital pictures for use in as-built BIM. 
The authors investigated the application of the Canny Edge Detector (Canny, 1986) and 
the Harris Corner Detector (Harris and Stephens, 1988) in obtaining information about 
edges and corners of buildings from digital pictures. The feasibility of identifying windows 
from façade edge geometries is also investigated, as these parameters are essential for 
the energy analysis of existing buildings. 



2. DETECTION OF BUILDING AND FAÇADE FEATURES FOR BUILDING INFORMATION 
MODELLING  

The light detection and ranging known as lidar is one of the most common technologies 
being used to collect measurements of building geometries. The processes used to 
construct BIM models using lidar include data collection or scanning, pre-processing and 
modelling. A lidar scanner collects point measurements by measuring the distance from 
a sensor to the target as it rotates about its axis. Although lidar scanners enable the 
automated collection of large amounts of data from a single site, the point clouds must 
undergo pre-processing before meaningful geometric models can be extracted.  

It is common for scans to be taken from multiple observation points due to large project 
size or obstructions in the line of site of the lidar scanning device. Therefore pre-
processing involves transforming data collected from different axis onto a common co-
ordinate system (registration) and the removal of unwanted points for example due to 
reflections. Some of the methods used to manually extract geometric models from the 
lidar point clouds include fitting geometric primitives such as surfaces or volumes by 
selecting data points or by using knowledge of the plan view (Haala et al., 1998).  

Another method uses extrusion cross sectional surfaces. For example, plan views are 
constructed from horizontal and vertical cross sections before a vertical profile is 
constructed by extruding the horizontal cross sections within constraints of the vertical 
cross sections. Other methods include using triangular meshes to model more complex 
shapes or using objects from known databases (Campbell and Flynn, 2001). In practice the 
processes of extracting BIM from dense point clouds is usually manual or only semi-
automated, resulting in high time and labour costs especially for large projects. Most BIM 
packages are unable to create a building information model directly from geometric 
primitives. The need to shuffle between software packages can lead to interoperability 
issues.  

3. COMPUTER VISION FOR BUILDING INFORMATION MODELLING  

Unlike laser scanning, stereo and computer vision techniques do not require specialist 
equipment or large amounts of manual pre-processing and are increasingly being used in 
the detection of building and façade features. The following sections present image-
processing algorithms which can be used to extract information about geometric 
parameters of common architectural features. 

A program was developed to extract key geometries such as edges and corners of 
buildings as well as identify areas of windows given an input image of a building façade. 
Buildings are selected from the University of New South Wales (UNSW) campus in Sydney, 
Australia. Run on the Python 2.7 interface, it utilised computer vision functions available 
in the open source computer vision library OpenCV. The processes used to extract key 



building geometries include image processing, corner detection, foreground extraction 
and edge detection. It should be noted that the proposed method is only semi automated. 
User interaction is required in foreground extraction, to specify parameters for corner 
detection and the hysteresis thresholds for edge detection. 

3.1. Feature Detection 

The limitations of obtaining structural information from images of building façades are 
well documented and have been reflected in the results of this research. These include 
image artefacts introduced due to camera resolution details (e.g. moiré), the effects of 
variations in illumination over an image, perspective distortions as well as obstructions in 
the foreground of images including trees and statues. These factors are unavoidable in 
images taken of real world scenes however their effect on results can be minimised 
through parameter selection methods and through image pre-processing.  

Manual threshold selection for edge detection is time intensive, complicated and due to 
its subjective nature introduces an aspect of human error. Future works may benefit from 
investigating the use of automated threshold selection where thresholds are determined 
based on characteristics of the individual images. This is to take into account differences 
in architectural features and lighting conditions (Medina-Carnicer et al., 2009; Fang et al., 
2009; Hancock and Kittler, 1991).  

Variations in illumination over individual images also affected the results of edge 
detection. Specifically edges in area of shading were left undetected due to weaker 
gradient responses to edges. This is a significant limitation as shading is a prevailing 
characteristic of façades due to varying surfaces and depths. Results could be improved 
by calculating thresholds based on local image statistics to take into account changes in 
illumination due to shading and lighting. Future works may benefit from investigating the 
application of adaptive threshold methods such as those proposed by Khallil and Aggoun 
(2006) which attempts to identify thresholds based on statistical analysis of local gradient 
magnitude histograms. 

As well as edges being undetected a number of false responses were produced due to 
textures on building façades. Results may be improved through the use of alternative edge 
detection algorithms which exploit the nature of physical edges in building façades. For 
example, an algorithm proposed by Gregson attempts to identify significant edges based 
on the assumption that they are more likely to be locally straight than noisy edges 
(Gregson, 1993).  

Distortions in the edge image were created by obstructions concealing parts of the 
building façades. Future studies may attempt to address this issue through the application 
of algorithms (Toyama et al., 1999) and commercial software such as those implemented 
by Böhm (2004) which have been developed to detect and remove moving objects such 



as pedestrians and cars by using multiple images of an object taken from a single station. 
Other works attempt to remove stationary obstructions such as trees and statues. This is 
done by taking multiple images of the building façade from different frames and using the 
effect of parallax to model, then remove occlusions in the same manner as for moving 
obstructions. 

3.2. Corner Detection 

Unlike edges, corners are discrete and thus their identification is not only important for 
providing connectivity between edges but for providing reference points which can be 
used to locate and orientate objects within a real world coordinate system. Corners in a 
digital image are created by discontinuities in depth, surface orientation as well as 
changes in illumination and are characterised by high intensity changes in more than one 
direction. Algorithms that attempt to identify corners in images generally fall into one of 
two categories: template- or geometry-based methods. Zheng et al. (1999) presented a 
review of different corner detection algorithms applied on grey level images evaluating 
them in terms of detection, localisation, stability (where corners are detected at the same 
position in different images taken from the same object) as well as the complexity of the 
algorithm and speed of implementation. Template-based corner detection algorithms 
involve measuring the correlation between an 𝑛 × 𝑛  square and sub-windows of the 
image using templates of possible corner configurations (Davies, 2012). Alternatively, 
geometry-based corner detectors attempt to identify corners based on properties of 
differential geometry, for example, by identifying corners as points along edges where the 
change in intensity gradient is a maximum (Kitchen and Rosenfeld, 1980) or as topological 
points on the image surface (Deriche and Giraudon, 1993). 

Corner points were identified in digital images of building façades using the Harris Corner 
detector. The Harris corner detector is based on an algorithm which examines the change 
in gradient as a window ( 𝑤 ) is shifted in different directions (Moravec, 1980). A 
mathematical formulation for the change in intensity (𝐼) produced by shifting a window 
(𝑢, 𝑣) at a point (𝑥, 𝑦) is given in Equation (1). 

 𝐸(𝑢, 𝑣) = ∑ 𝑤(𝑥, 𝑦) [𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2
𝑥,𝑦    (1) 

If there is a large intensity change in more than one direction, then the window claimed 
to contain a corner. If the shift in the window only causes an intensity change in one 
direction, then it contains an edge. Lastly, if there is no change of intensity, then the 
window does not contain any key features. The Harris corner detector typically uses a 
circular- or circularly-weighted window such as a Gaussian window where the intensity of 
a pixel is compared to that of pixels in the surrounding region weighted according to the 
Gaussian function. This reduces the influence of background noise by applying a greater 
weight to the intensity differences between pixels in the centre of the window. 



The Harris corner detector uses a scoring system where each pixel is assigned a score 𝑅 
which is calculated using the eigenvalues of the Taylor expansion of Equation (1). In this 
scoring system, a large 𝑅  corresponds to a high intensity gradient in more than one 
direction. Results are refined using non-maximal suppression and hysteresis thresholding. 
Non-maximal suppression is used to mark pixels which are a maximum compared to its 
eight adjacent pixels which reduces the influence of natural oscillations which occur 
around corners in digital images. Hysteresis threshholding is applied to mark edges with 
an 𝑅 value above a value 𝑘 which is determined empirically.  

To evaluate the performance of the Harris corner detector, the authors adopted the 
definition of a corner presented by Mokhtarian and Mohanna where a corner is “an image 
point where a two dimensional change can be observed in the image” (Mokhtarian and 
Mohanna, 2006, p. 81). It is the authors’ aim to investigate the performance of the Harris 
corner detector in identifying corners in building façades which can be used to locate 
extracted building geometries in real world coordinate systems. 

Corner detection was implemented prior to foreground extraction. It was found that 
applying the Harris corner detector on the foreground image lead to high responses on 
the boundary between foreground and background. Similarly a number of false responses 
were also detected in façade features such as railings and louvers, which reflects the 
Harris Corner detector’s high response to edges due to noise, pixilation and quantisation.  

The Harris corner detector requires three input parameters, the size of the input window, 
the value for parameter 𝑘 and the kernel size of the Sobel operator which is used to 
perform image smoothing and to estimate the intensity gradient in each window. Manual 
parameter selection was a difficult and time-consuming process which involved a trade 
off between good corner detection and minimising the response to noise. Finding 
parameters which produced good results across all images was further complicated by 
varying façade textures of building façades.  

Highly textured façades such as that shown in Figure 1 lead to the identification of a 
number of points of limited physical significance such as corners of bricks. A lower error 
rate would have been produced if parameters were selected based on the characteristics 
of individual images. For the purpose of this research, however, only the successful 
identification of a small number of key points to geo-reference the digital image of 
building façades is required, and all erroneous responses can be ignored. Thus the 
adoption of a single set of parameters for all images is considered acceptable. 

 

 

 



Figure 1: Highly textured façades lead to high error rate as points of low physical significance 
such as corners of bricks were marked as corners. 

 

 

The Harris corner detector was also found to produce poor localisation at certain corner 
junctions. Figure 2 demonstrates how the Harris Corner detector performed poorly at 
identifying corners which were the junction of two curved edges. Future areas of research 
could focus on evaluating the performance feature detection algorithms in detecting the 
types of corners present in building façades as well as an investigation on the affect of 
scaling on the accuracy and error rate of corner responses. Accuracy could be assessed by 
comparing the location of the detected corner to their precise two dimensional position 
using knowledge of 3D coordinates or to ground truths established by human judgement 
(Mokhtarian and Mohanna, 2006). 

 

 

 

 

 

 

 



Figure 2: High error rate along roof of the building demonstrates how the Harris corner has a 
poor response to corners which are the junction of two curved edges. 

 

 

3.3. Foreground Extraction 

Foreground extraction was used to segment areas of interest from background noise in 
images. This increased the accuracy of feature extraction algorithms such as edge 
detection by reducing the effect of background noise. It also reduced the computational 
time associated with further feature detection algorithms. 

Manual foreground extraction involves tracing around the border of areas of interest. This 
approach is time consuming and inaccurate, however, accurate fully-automated 
foreground segmentation remains an unsolved problem with most algorithms in use 
being semi automated. Foreground extraction algorithms generally fall under two 
categories: contrast/edge-based segmentation or those based on colour/texture. Some 
popular edge-based foreground extraction methods include intelligent scissors 
(Mortensen and Barrett, 1995) and Magnetic Lasso. In these methods, segmentation 
follows definition of the boundary of the object of interest. For example, intelligent 
scissors require the user to define ‘seed’ points along the boundary of the object of 
interest. Dynamic programming and graph search are then used to wrap a ‘live wire’ 
around its boundary.  



Image matting techniques attempt to segment images from the background based on the 
property that differences in surfaces textures in an image are related to differences in 
material properties in the physical world. Wang and Cohen (2008) presented a review of 
the different image matting approaches, evaluating them in terms of robustness, 
efficiency and accuracy. In most cases texture-based foreground segmentation or image 
matting requires the user to first define a trimap: identifying areas of sure foreground, 
sure background and unknown regions. Unknown pixels are then classified using 
properties of image smoothness and image statistics (Chuang et al., 2001; Sun et al., 2004; 
Grady et al., 2005).  

Developed by Rother et al. (Rother et al., 2004), the authors used the ‘Grab-Cut’ algorithm 
to segment images of building façades from their backgrounds. Grab-Cut is a multistep 
algorithm that utilises characteristics of edges and image mattes to separate foreground 
objects from background images. The user is first required to identify areas of known 
background by placing a rectangle around the object of interest. Everything outside the 
rectangle is labelled as background and the remaining pixels are labelled as unknown. An 
initial segmentation is carried out based on Gaussian Mixture Model (Stauffer and 
Grimson, 1999). This is where background pixels are assumed to be represented by a 
mixture of Gaussian distributions. In each iteration, the image is then segmented based 
on the probability that the pixel belongs to the Gaussian distribution of the 
foreground/background. The user then has the option of touching up the segmentation 
by using brush strokes to constrain incorrectly labelled pixels to the foreground or 
background. 

Images were resized before foreground extraction was performed by reducing the size of 
the image. This also reduced the computational time. For images of greater resolution or 
where large sets of images are needed to be processed this high computational time 
would be of concern. Figure 3 presents an example where Grab-Cut produced good results 
with minimal user interaction. After initial segmentation, Grab-Cut converged to produce 
accurate foreground segmentation. Additional user interaction was only required to 
constrain pixels to background near the bottom left corner of the building where a 
structure in the background overlapped the building of interest. Also, white brushstrokes 
were used to constrain foreground pixels on the bottom right hand corner of the building 
in an area of shading. 

 

 

 

 



Figure 3: Foreground extraction. a) Original image with user input including initial 
segmentation and brush strokes near the bottom left and right hand corner of the building 

which were used to constrain pixels to background and foreground respectively, b) final 
segmentation. 

 

In contrast to textured objects such as smoke and hair, due to the nature of structures 
and construction materials, the edges of buildings are well defined against the 
background (i.e. sky in Figure 3). In cases where the colour distribution of the background 
and foreground were similar (such as a grey or white building against an overcast sky) two 
situations arose. Either more iterations were required before the initial segmentation 
converged or the user was required to manually correct incorrectly labelled pixels. Less 



accurate results could be expected from pictures that are taken in highly developed areas 
where background and foreground pixels are of similar colour or in bushy areas where 
parts of the foreground are camouflaged by foliage. 

Another interesting observation was that the algorithm did not perform well when 
different areas of the foreground were of high contrast in colour such as the area of 
shadow adjacent to a light area illuminated by direct sunlight. This is because when the 
intensity varies abruptly it does not conform to the Gaussian distribution (Kim et al., 
2007). One drawback of Grab-Cut is that user error can be easily introduced to the 
algorithm through the initial segmentation. The rectangle which is used to define the area 
of known background should be as close a fit to the building edges as possible. If the area 
inside the rectangle contains too much background area it may take many iterations or 
further user interaction before correct segmentation is reached. Future works would 
benefit from changing the tool available to the user to define the initial segmentation. For 
example, area of known background could be defined using straight-line segments rather 
than a rectangle. 

3.4. Edge Detection 

Edge detection algorithms are commonly used to extract details of building boundaries as 
they less likely to be completely obscured by obstructions then features such as corners. 
Edge detection algorithms use changes in intensity to identify physical changes in depth, 
illumination and reflection. A review of different edge detection algorithms can be found 
in (Ziou and Tabbone, 1998) and (Davis, 1975). Most edge detection algorithms include 
the following processes:  application of a smoothing filter to reduce the effects of intensity 
changes due to image noise, application of a gradient operator and a process that 
attempts to label the edge by suppressing false edges. There are studies that attempt to 
rank the relative performance of different edge detection algorithms (Heath et al., 1996) 
however their performance is related to image properties including edge types and image 
noise.  

Edges of building geometries were extracted using the Canny edge detector (Canny, 
1986), an algorithm which involves the following processes. 

a. Noise reduction 
b. Calculation of gradient magnitudes and directions 
c. Non-maximum suppression 
d. Hysteresis thresholding 

Noise reduction is performed by convolving a discrete approximation of the Gaussian 
function known as the Gaussian filter with the original image. The intensity gradients are 
then calculated across the image using the Sobel operator (Sobel and Feldman, 1968). 
Non-maximum suppression is used to mark edges that are to be considered to be part of 



an edge. This is where the gradient of each pixel is compared with that of the two adjacent 
pixels. If the gradient of the pixel is greater than the gradient of the two pixels in the 
gradient direction, then it is marked as an edge.   

Edges are determined from the resulting binary image by hysteresis thresholding which is 
used to mark true edges while removing false edges which may be due to noise, changes 
in colour or changes in lighting. The intensity gradient of each pixel is compared to an 
upper and lower threshold. If the gradient is above the upper threshold it is marked as a 
definite edge and if it is below the minimum threshold it is marked as a non-edge. Any 
pixels with gradients between the upper and lower thresholds are only marked as an edge 
if they are connected to a pixel with a gradient above the upper threshold. The thresholds 
are most commonly decided on an ad hoc basis and are dependent on image 
characteristics such as lighting and level of noise. 

In this research the high and low hysteresis thresholds were selected manually for each 
image. Deciding the threshold values was a trade off between a good localisation and high 
error rate. Too high a threshold missed some of key edges, and too low a threshold 
resulted in noise e.g. building textures being marked as edges. Optimal threshold will 
depend on characteristics of the input image. Sample images were taken from around a 
university campus where buildings were constructed during different time periods, 
possessing different architectural features and reflecting a need for different hysteresis 
thresholds.  

Rather than manually select hysteresis threshold for each building, which is time 
consuming and introduces user error, future works aimed at the automated extraction of 
building geometries from images would benefit from the use of unsupervised threshold 
selecting algorithms. Unsupervised methods of threshold estimation include parametric 
methods, where selection of parameters is based on image statistics such as the standard 
deviation of background noise (Hancock and Kittler, 1991). Alternatively, the effect of 
building textures could be reduced by increasing the size of the Gaussian kernel, however, 
this may have the effect of reducing the accuracy of edge localization. 

The most significant factor affecting the results of edge detection was the presence of 
trees and other obstructions obscuring parts of the building. On highly reflective surfaces 
the reflections of objects in the foreground were also detected as edges. This is seen in 
Figure 4 where the reflection of the tree in the foreground was detected by the canny 
edge detector. 

 

 

 



 

Figure 4: Edge detection. a) Edges detected with Canny edge detection illustrating how the 
reflection of a tree is detected as edges by the Canny edge detector, b) original image. 

 

 

4. WINDOW DETECTION  

The location and areas of windows relative to features of the building envelope has a 
significant impact on the energy use in the operation of a building through influence on 
insulation, lighting as well as passive heating and cooling (Persson et al., 2006; Ghisi and 
Tinker, 2005). With operational energy responsible for up to 90% of a buildings energy 



demand over its life (Ramesh et al., 2010) the ability to extract information about areas 
of windows is of high importance in the energy analysis of individual buildings as well as 
the buildings in a geographic area.  

Laser scans often perform poorly in the detection of fine architectural features. This is due 
to limited data points or non-reflective surfaces such as windows and balconies. Works 
that attempt to identify building features such as windows generally focus on identifying 
a single feature type by exploiting properties of their regular repeated shape (Shaw and 
Barnes, 2006; Sirmacek et al., 2011) or elements that satisfy certain symmetry rules 
(Wenzel et al., 2008). A limitation of these methods is that further input is required in the 
presence of irregular shapes. Another approach involves segmenting the façade based on 
horizontal and vertical projections of façade edges occurring above a specified thresholds 
(Lee and Nevatia, 2004). These projections segment the block into a series of rectangles 
which are then classified as window or façade based on the size, colour and gradient 
content of each block. This approach uses the assumption that the strongest edges of a 
façade occur at windows. 

Figure 5: Vectorisation. a) Original window detection image, b) vectorised image demonstrating 
how polygons were created around pixels marked as edges. 

 

Following vectorisation of edge images of building façades, the authors attempted to 
identify areas of windows by selected polygons based on properties of area and 
perimeter. Vectorisation was performed by creating polygons out of contiguous cells with 
the same value on the binary edge image. This method performed well in maintaining 
information at edge junctions, however, a concerning feature was that polygons were 
created around pixels marked as edges which resulted in polygons being created for each 
of the edges. This lead to higher processing times and visual distortions as demonstrated 



in Figure 5. Future works may benefit from investigating alternative approaches to 
vectorise edge images. 

The authors attempted to identify areas of windows from the vector images by selecting 
polygons based on their area and perimeter. This involved creating queries to select 
polygons with areas that lay within a maximum and minimum value as demonstrated in 
Figure 6. These thresholds were selected for each window type in a façade using a trial 
and error approach which aimed to correctly identify the maximum number of windows 
while reduce the number of polygons which were incorrectly identified as windows. 
Results were refined by introducing a restriction on window perimeter to the original area 
query. 

Figure 6: Window detection. a) edge image, b) polygons identified as true positives, c) polygons 
selected with area between 100 and 340 or 40 and 100 square units, d) polygons of these which 

are identified as true positives. 

 

The aim of this research was to identify polygons which would correspond to areas of 
window panes in the actual building façade. For each image the following results were 
recorded: the number of polygons selected that correspond to areas of windows (true 
positives), polygons selected that did not correspond to areas of windows in the façade 
(false positives) and the number polygons that correspond to windows but were not 
selected (false negatives). Figure 7 displays the result for true positives when two different 
queries were used to identify windows, an area based criteria and a query that also 
imposes restrictions on maximum polygon perimeter. 

a)                                                              b) 

c)                                                              d) 



Figure 7: Polygons correctly identified as windows (true positives) as a percentage of total 
number of windows. 

 

 

Ground truths were defined as enclosed polygons with areas greater than 10 square units 
which correspond to window panes in the edge image. Unenclosed polygons had areas 
too large to be included in statistically useful results while small polygons could be 
attributed to noise introduced to the image during edge extraction. Ground truths were 
defined in terms of the edge image rather than the original photograph due to 
discrepancies between the two images which are a result of edge extraction.  

Good results were obtained for the Electrical Engineering building (Figure 6) and Tyree 
building façades (Figure 8) where windows were represented as polygons of a consistent 
size over the face. This occurred when windows on the façade were uniform in shape and 
size, when windows were not obstructed by objects in the foreground and when the 
photograph had been taken at an angle and position which minimised the affect of 
perspective distortions. 

 

 

 

 

0

20

40

60

80

100

120

Area based criteria only

Area and perimeter based
criteria



Figure 8: The regular shape of windows on the front face of the Tyree building lead to all 
windows being correctly identified. 

 

A large numbers of false results were produced on highly textured façades such as that of 
the University Terraces (Figure 9) where polygons created within the façade texture were 
detected as windows. Another source of false positives was the polygons created around 
edge pixels. Polygons created around edge pixels and within façade textures often had 
much larger perimeters then window areas. Figure 9 demonstrates how introducing 
restrictions on maximum perimeter improved the results by reducing the number of false 
positives while only decreasing the number of true positives slightly. 

 

 

 

 

 

 

 

 



Figure 9: Highly textured facades. a) Polygons defined as windows, b) polygons selected with 
areas between 150 and 750 square units and c) polygons selected when additional restriction is 

applied on maximum polygon area (shape length ≤ 250). 

 



Figure 10: Red Centre West Wing. a) digital image, b) polygons selected with areas between 
200 and 600 square units and perimeters less than 380 units. 

a)  

b)  

Less effective window detection was observed when window polygons in an image were 
of varying sizes and shapes. This could be attributed to perspective distortions or 
distortions in the edge image due to lighting conditions such as for the image of the 
Quadrangle façade. The lowest number of true positives was observed on the façade of 
Red Centre West Wing (Figure 10) where window polygons varied from 13-1,200 square 



units due to lighting (shading around windows) and perspective distortions. The high 
variation in window area and perimeter made it difficult to select a threshold that 
maximised the number of true positives and minimised the number of false negatives.  

A major factor that limited the accuracy of results was the lack of edge connectivity 
around window polygons. This resulted in window polygons which were not detected 
when they had areas and perimeters which lay outside the predicted area and perimeter 
ranges. Although this problem is a product of edge detection, results could be improved 
through methods which attempt to fill in holes in lines such as through the use of 
morphological filters. 

Although area and perimeter thresholds would need to be selected individually for each 
façade, window identification could be simplified for geo-referenced images by exploiting 
properties of the regular repeating shape and size of windows in façades. Geometries for 
each window type could be obtained from direct measurement of one sample window 
(e.g. with a tape measure) or from architectural plans. This knowledge of actual area and 
perimeter could then be used to estimate thresholds to identify windows in the vector 
image referenced in real world coordinate systems.  

It is recognised that in the proposed methodology, user error is not only introduced 
through threshold selection but through the subjective nature of identifying ground 
truths. More meaningful results could be achieved if window identification was 
performed on geo-referenced images and the total area of selected polygons was 
compared to known areas of windows present in the building façades. 

5. DISCUSSION  

5.1. Accuracy 

Although a number of promising results were observed, an investigation into the accuracy 
of feature extraction would need to be performed before the results could be considered 
of practical use. Schmid et al. (2000) presented a review of the methods used to assess 
the performance of low level feature extraction algorithms. For the purpose of feature 
extraction for BIM, future works would benefit from a quantitative analysis of the 
accuracy of corner and edge detection. The accuracy of corner detection can be assessed 
by comparing the location of extracted corners with their known position in 3D coordinate 
systems. Thus a study into accuracy may need to be completed in conjunction with an 
investigation into the feasibility of geo-referencing the vertical images of façades. The 
effect of image scaling on the accuracy of corner accuracy would be a worthwhile area of 
investigation, particularly for the Harris corner detector which is known to perform poorly 
in the scaling transformation. 



Due to their non discrete nature, edges can be hard to define, however, the accuracy of 
edge detectors could be evaluated using an approach similar to that suggested by Bhatla 
et al. (2012). In this method, lengths of edges extracted from the image are compared to 
actual lengths obtained from site conditions using distinct reference points (e.g. length of 
building edge, distance between artificial reference points) and accuracy is assed using 
percentage deviation. Alternatively, edge detection could be evaluated using known edge 
lengths from artificial images of building façades. However for this to be representative 
of actual conditions, artificial images would need to include features such as variations in 
illumination and variations in texture (Fram and Deutsch, 1975). 

5.2. Window Identification 

A number of false responses were obtained using an area-based criterion to identify 
windows from the edge image. This was due to polygons created within building textures 
and around edge pixels falling within the area range of windows in the façade. The 
number of false positives could be reduced in future works by imposing restrictions on 
the maximum number of vertices in addition to the area-based criteria. Due to their 
irregular shape, polygons created within building textures would be expected to have a 
large number of vertices. Alternatively, future works may wish to reduce the number of 
false positives using a centroid based criteria. For example by only selecting polygons 
who’s centroid lies within its area. This could be expected to remove many false positives 
while retaining window polygons which are typically convex in shape.  

Ideally, areas of windows could be identified using criteria which could be applied across 
all images. This could be achieved by identifying areas of windows based on properties of 
image texture. Image texture is a complex image to properly define, there is no standard 
definition however it can be described as ‘the characteristic variation in intensity of a 
region of an image’ (Davies, 2012, p.21). There are two main methods used to distinguish 
image textures: statistical based methods which attempt to characterise the distribution 
of grey values in an image while the structure based methods involve identifying areas 
composed of texture units within a certain displacement rule (Tuceryan and Jain, 1998). 
One approach to identify areas of windows would be to segment the image based on 
image texture and identify areas of windows as areas with common texture. 

6. CONCLUDING REMARKS  

 As-built building information models are increasingly being looked to as an alternative to 
conventional paper documentation in construction processes. As well as facilitating 
communication between stake holders, they are used as a tool for improving construction 
safety and assessing the environmental performance of existing buildings. Subsequently, 
there is a growing interest in technologies which can be used to improve the efficiency of 
methods used to collect and process data for as-built building information models. 



The use of image processing to extract information about building geometries from digital 
pictures is an attractive alternative to laser scanners and total station theodolites as data 
can be collected quickly and does not require use of expensive, specialist equipment. The 
objective of this research was to investigate performance of feature extraction algorithms 
in obtaining information about edges and corners of buildings as well as areas of windows 
from digital images of façades for the purpose of building information modeling.  

A number of promising results were produced, however, further work is required before 
feature extraction can be considered as a viable alternative for collecting information for 
as-built BIMs. Future investigations should focus on the use of automated methods to 
determine algorithm thresholds and parameters to account for differences in the 
architectural features of building facades as well as environmental factors such as shading 
and lighting. 
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